MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclsi Structured version   Visualization version   GIF version

Theorem cnclsi 22521
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cnclsi.1 𝑋 = 𝐽
Assertion
Ref Expression
cnclsi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))

Proof of Theorem cnclsi
StepHypRef Expression
1 cntop1 22489 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 481 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
3 cnvimass 6013 . . . . 5 (𝐹 “ (𝐹𝑆)) ⊆ dom 𝐹
4 cnclsi.1 . . . . . . 7 𝑋 = 𝐽
5 eqid 2736 . . . . . . 7 𝐾 = 𝐾
64, 5cnf 22495 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
76adantr 481 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐹:𝑋 𝐾)
83, 7fssdm 6665 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ (𝐹𝑆)) ⊆ 𝑋)
9 simpr 485 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆𝑋)
107fdmd 6656 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → dom 𝐹 = 𝑋)
119, 10sseqtrrd 3972 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ dom 𝐹)
12 sseqin2 4161 . . . . . 6 (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹𝑆) = 𝑆)
1311, 12sylib 217 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (dom 𝐹𝑆) = 𝑆)
14 dminss 6085 . . . . 5 (dom 𝐹𝑆) ⊆ (𝐹 “ (𝐹𝑆))
1513, 14eqsstrrdi 3986 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ (𝐹 “ (𝐹𝑆)))
164clsss 22303 . . . 4 ((𝐽 ∈ Top ∧ (𝐹 “ (𝐹𝑆)) ⊆ 𝑋𝑆 ⊆ (𝐹 “ (𝐹𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
172, 8, 15, 16syl3anc 1370 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
18 imassrn 6004 . . . . 5 (𝐹𝑆) ⊆ ran 𝐹
197frnd 6653 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ran 𝐹 𝐾)
2018, 19sstrid 3942 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹𝑆) ⊆ 𝐾)
215cncls2i 22519 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝑆) ⊆ 𝐾) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2220, 21syldan 591 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2317, 22sstrd 3941 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
247ffund 6649 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → Fun 𝐹)
254clsss3 22308 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
261, 25sylan 580 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
2726, 10sseqtrrd 3972 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹)
28 funimass3 6981 . . 3 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
2924, 27, 28syl2anc 584 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
3023, 29mpbird 256 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  cin 3896  wss 3897   cuni 4851  ccnv 5613  dom cdm 5614  ran crn 5615  cima 5617  Fun wfun 6467  wf 6469  cfv 6473  (class class class)co 7329  Topctop 22140  clsccl 22267   Cn ccn 22473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5226  ax-sep 5240  ax-nul 5247  ax-pow 5305  ax-pr 5369  ax-un 7642
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4269  df-if 4473  df-pw 4548  df-sn 4573  df-pr 4575  df-op 4579  df-uni 4852  df-int 4894  df-iun 4940  df-iin 4941  df-br 5090  df-opab 5152  df-mpt 5173  df-id 5512  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6425  df-fun 6475  df-fn 6476  df-f 6477  df-f1 6478  df-fo 6479  df-f1o 6480  df-fv 6481  df-ov 7332  df-oprab 7333  df-mpo 7334  df-map 8680  df-top 22141  df-topon 22158  df-cld 22268  df-cls 22270  df-cn 22476
This theorem is referenced by:  cncls  22523  hmeocls  23017  clsnsg  23359
  Copyright terms: Public domain W3C validator