Proof of Theorem cnclsi
| Step | Hyp | Ref
| Expression |
| 1 | | cntop1 23183 |
. . . . 5
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) |
| 2 | 1 | adantr 480 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝐽 ∈ Top) |
| 3 | | cnvimass 6074 |
. . . . 5
⊢ (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ dom 𝐹 |
| 4 | | cnclsi.1 |
. . . . . . 7
⊢ 𝑋 = ∪
𝐽 |
| 5 | | eqid 2736 |
. . . . . . 7
⊢ ∪ 𝐾 =
∪ 𝐾 |
| 6 | 4, 5 | cnf 23189 |
. . . . . 6
⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋⟶∪ 𝐾) |
| 7 | 6 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝐹:𝑋⟶∪ 𝐾) |
| 8 | 3, 7 | fssdm 6730 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ 𝑋) |
| 9 | | simpr 484 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ 𝑋) |
| 10 | 7 | fdmd 6721 |
. . . . . . 7
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → dom 𝐹 = 𝑋) |
| 11 | 9, 10 | sseqtrrd 4001 |
. . . . . 6
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ dom 𝐹) |
| 12 | | sseqin2 4203 |
. . . . . 6
⊢ (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹 ∩ 𝑆) = 𝑆) |
| 13 | 11, 12 | sylib 218 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (dom 𝐹 ∩ 𝑆) = 𝑆) |
| 14 | | dminss 6147 |
. . . . 5
⊢ (dom
𝐹 ∩ 𝑆) ⊆ (◡𝐹 “ (𝐹 “ 𝑆)) |
| 15 | 13, 14 | eqsstrrdi 4009 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) |
| 16 | 4 | clsss 22997 |
. . . 4
⊢ ((𝐽 ∈ Top ∧ (◡𝐹 “ (𝐹 “ 𝑆)) ⊆ 𝑋 ∧ 𝑆 ⊆ (◡𝐹 “ (𝐹 “ 𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆)))) |
| 17 | 2, 8, 15, 16 | syl3anc 1373 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆)))) |
| 18 | | imassrn 6063 |
. . . . 5
⊢ (𝐹 “ 𝑆) ⊆ ran 𝐹 |
| 19 | 7 | frnd 6719 |
. . . . 5
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ran 𝐹 ⊆ ∪ 𝐾) |
| 20 | 18, 19 | sstrid 3975 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (𝐹 “ 𝑆) ⊆ ∪ 𝐾) |
| 21 | 5 | cncls2i 23213 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹 “ 𝑆) ⊆ ∪ 𝐾) → ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆))) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
| 22 | 20, 21 | syldan 591 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘(◡𝐹 “ (𝐹 “ 𝑆))) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
| 23 | 17, 22 | sstrd 3974 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆)))) |
| 24 | 7 | ffund 6715 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → Fun 𝐹) |
| 25 | 4 | clsss3 23002 |
. . . . 5
⊢ ((𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 26 | 1, 25 | sylan 580 |
. . . 4
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋) |
| 27 | 26, 10 | sseqtrrd 4001 |
. . 3
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) |
| 28 | | funimass3 7049 |
. . 3
⊢ ((Fun
𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆))))) |
| 29 | 24, 27, 28 | syl2anc 584 |
. 2
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘(𝐹 “ 𝑆))))) |
| 30 | 23, 29 | mpbird 257 |
1
⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹 “ 𝑆))) |