MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclsi Structured version   Visualization version   GIF version

Theorem cnclsi 23301
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cnclsi.1 𝑋 = 𝐽
Assertion
Ref Expression
cnclsi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))

Proof of Theorem cnclsi
StepHypRef Expression
1 cntop1 23269 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 480 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
3 cnvimass 6111 . . . . 5 (𝐹 “ (𝐹𝑆)) ⊆ dom 𝐹
4 cnclsi.1 . . . . . . 7 𝑋 = 𝐽
5 eqid 2740 . . . . . . 7 𝐾 = 𝐾
64, 5cnf 23275 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
76adantr 480 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐹:𝑋 𝐾)
83, 7fssdm 6766 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ (𝐹𝑆)) ⊆ 𝑋)
9 simpr 484 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆𝑋)
107fdmd 6757 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → dom 𝐹 = 𝑋)
119, 10sseqtrrd 4050 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ dom 𝐹)
12 sseqin2 4244 . . . . . 6 (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹𝑆) = 𝑆)
1311, 12sylib 218 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (dom 𝐹𝑆) = 𝑆)
14 dminss 6184 . . . . 5 (dom 𝐹𝑆) ⊆ (𝐹 “ (𝐹𝑆))
1513, 14eqsstrrdi 4064 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ (𝐹 “ (𝐹𝑆)))
164clsss 23083 . . . 4 ((𝐽 ∈ Top ∧ (𝐹 “ (𝐹𝑆)) ⊆ 𝑋𝑆 ⊆ (𝐹 “ (𝐹𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
172, 8, 15, 16syl3anc 1371 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
18 imassrn 6100 . . . . 5 (𝐹𝑆) ⊆ ran 𝐹
197frnd 6755 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ran 𝐹 𝐾)
2018, 19sstrid 4020 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹𝑆) ⊆ 𝐾)
215cncls2i 23299 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝑆) ⊆ 𝐾) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2220, 21syldan 590 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2317, 22sstrd 4019 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
247ffund 6751 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → Fun 𝐹)
254clsss3 23088 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
261, 25sylan 579 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
2726, 10sseqtrrd 4050 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹)
28 funimass3 7087 . . 3 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
2924, 27, 28syl2anc 583 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
3023, 29mpbird 257 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cin 3975  wss 3976   cuni 4931  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  Topctop 22920  clsccl 23047   Cn ccn 23253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-map 8886  df-top 22921  df-topon 22938  df-cld 23048  df-cls 23050  df-cn 23256
This theorem is referenced by:  cncls  23303  hmeocls  23797  clsnsg  24139
  Copyright terms: Public domain W3C validator