MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnclsi Structured version   Visualization version   GIF version

Theorem cnclsi 22776
Description: Property of the image of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cnclsi.1 𝑋 = 𝐽
Assertion
Ref Expression
cnclsi ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))

Proof of Theorem cnclsi
StepHypRef Expression
1 cntop1 22744 . . . . 5 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
21adantr 482 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐽 ∈ Top)
3 cnvimass 6081 . . . . 5 (𝐹 “ (𝐹𝑆)) ⊆ dom 𝐹
4 cnclsi.1 . . . . . . 7 𝑋 = 𝐽
5 eqid 2733 . . . . . . 7 𝐾 = 𝐾
64, 5cnf 22750 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹:𝑋 𝐾)
76adantr 482 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝐹:𝑋 𝐾)
83, 7fssdm 6738 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ (𝐹𝑆)) ⊆ 𝑋)
9 simpr 486 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆𝑋)
107fdmd 6729 . . . . . . 7 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → dom 𝐹 = 𝑋)
119, 10sseqtrrd 4024 . . . . . 6 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ dom 𝐹)
12 sseqin2 4216 . . . . . 6 (𝑆 ⊆ dom 𝐹 ↔ (dom 𝐹𝑆) = 𝑆)
1311, 12sylib 217 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (dom 𝐹𝑆) = 𝑆)
14 dminss 6153 . . . . 5 (dom 𝐹𝑆) ⊆ (𝐹 “ (𝐹𝑆))
1513, 14eqsstrrdi 4038 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → 𝑆 ⊆ (𝐹 “ (𝐹𝑆)))
164clsss 22558 . . . 4 ((𝐽 ∈ Top ∧ (𝐹 “ (𝐹𝑆)) ⊆ 𝑋𝑆 ⊆ (𝐹 “ (𝐹𝑆))) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
172, 8, 15, 16syl3anc 1372 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))))
18 imassrn 6071 . . . . 5 (𝐹𝑆) ⊆ ran 𝐹
197frnd 6726 . . . . 5 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ran 𝐹 𝐾)
2018, 19sstrid 3994 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹𝑆) ⊆ 𝐾)
215cncls2i 22774 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐹𝑆) ⊆ 𝐾) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2220, 21syldan 592 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘(𝐹 “ (𝐹𝑆))) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
2317, 22sstrd 3993 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆))))
247ffund 6722 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → Fun 𝐹)
254clsss3 22563 . . . . 5 ((𝐽 ∈ Top ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
261, 25sylan 581 . . . 4 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ 𝑋)
2726, 10sseqtrrd 4024 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹)
28 funimass3 7056 . . 3 ((Fun 𝐹 ∧ ((cls‘𝐽)‘𝑆) ⊆ dom 𝐹) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
2924, 27, 28syl2anc 585 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → ((𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)) ↔ ((cls‘𝐽)‘𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘(𝐹𝑆)))))
3023, 29mpbird 257 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑋) → (𝐹 “ ((cls‘𝐽)‘𝑆)) ⊆ ((cls‘𝐾)‘(𝐹𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  cin 3948  wss 3949   cuni 4909  ccnv 5676  dom cdm 5677  ran crn 5678  cima 5680  Fun wfun 6538  wf 6540  cfv 6544  (class class class)co 7409  Topctop 22395  clsccl 22522   Cn ccn 22728
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-map 8822  df-top 22396  df-topon 22413  df-cld 22523  df-cls 22525  df-cn 22731
This theorem is referenced by:  cncls  22778  hmeocls  23272  clsnsg  23614
  Copyright terms: Public domain W3C validator