MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2i Structured version   Visualization version   GIF version

Theorem cncls2i 23124
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cncls2i ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))

Proof of Theorem cncls2i
StepHypRef Expression
1 cntop2 23095 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2 cncls2i.1 . . . . 5 𝑌 = 𝐾
32clscld 22901 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
41, 3sylan 579 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
5 cnclima 23122 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
64, 5syldan 590 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
72sscls 22910 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
81, 7sylan 579 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
9 imass2 6094 . . 3 (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
108, 9syl 17 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
11 eqid 2726 . . 3 𝐽 = 𝐽
1211clsss2 22926 . 2 (((𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
136, 10, 12syl2anc 583 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3943   cuni 4902  ccnv 5668  cima 5672  cfv 6536  (class class class)co 7404  Topctop 22745  Clsdccld 22870  clsccl 22872   Cn ccn 23078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7407  df-oprab 7408  df-mpo 7409  df-map 8821  df-top 22746  df-topon 22763  df-cld 22873  df-cls 22875  df-cn 23081
This theorem is referenced by:  cnclsi  23126  cncls2  23127  imasncls  23546  hmeocls  23622  clssubg  23963
  Copyright terms: Public domain W3C validator