![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncls2i | Structured version Visualization version GIF version |
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cncls2i | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop2 23270 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
2 | cncls2i.1 | . . . . 5 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 2 | clscld 23076 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
4 | 1, 3 | sylan 579 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
5 | cnclima 23297 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | syldan 590 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) |
7 | 2 | sscls 23085 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
8 | 1, 7 | sylan 579 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
9 | imass2 6132 | . . 3 ⊢ (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
11 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
12 | 11 | clsss2 23101 | . 2 ⊢ (((◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
13 | 6, 10, 12 | syl2anc 583 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ∪ cuni 4931 ◡ccnv 5699 “ cima 5703 ‘cfv 6573 (class class class)co 7448 Topctop 22920 Clsdccld 23045 clsccl 23047 Cn ccn 23253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cld 23048 df-cls 23050 df-cn 23256 |
This theorem is referenced by: cnclsi 23301 cncls2 23302 imasncls 23721 hmeocls 23797 clssubg 24138 |
Copyright terms: Public domain | W3C validator |