MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2i Structured version   Visualization version   GIF version

Theorem cncls2i 22765
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cncls2i ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))

Proof of Theorem cncls2i
StepHypRef Expression
1 cntop2 22736 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2 cncls2i.1 . . . . 5 𝑌 = 𝐾
32clscld 22542 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
41, 3sylan 580 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
5 cnclima 22763 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
64, 5syldan 591 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
72sscls 22551 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
81, 7sylan 580 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
9 imass2 6098 . . 3 (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
108, 9syl 17 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
11 eqid 2732 . . 3 𝐽 = 𝐽
1211clsss2 22567 . 2 (((𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
136, 10, 12syl2anc 584 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wss 3947   cuni 4907  ccnv 5674  cima 5678  cfv 6540  (class class class)co 7405  Topctop 22386  Clsdccld 22511  clsccl 22513   Cn ccn 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-map 8818  df-top 22387  df-topon 22404  df-cld 22514  df-cls 22516  df-cn 22722
This theorem is referenced by:  cnclsi  22767  cncls2  22768  imasncls  23187  hmeocls  23263  clssubg  23604
  Copyright terms: Public domain W3C validator