Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cncls2i | Structured version Visualization version GIF version |
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.) |
Ref | Expression |
---|---|
cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
Ref | Expression |
---|---|
cncls2i | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntop2 22388 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
2 | cncls2i.1 | . . . . 5 ⊢ 𝑌 = ∪ 𝐾 | |
3 | 2 | clscld 22194 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
4 | 1, 3 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
5 | cnclima 22415 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) | |
6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) |
7 | 2 | sscls 22203 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
8 | 1, 7 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
9 | imass2 6008 | . . 3 ⊢ (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) | |
10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
11 | eqid 2740 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
12 | 11 | clsss2 22219 | . 2 ⊢ (((◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
13 | 6, 10, 12 | syl2anc 584 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ∪ cuni 4845 ◡ccnv 5588 “ cima 5592 ‘cfv 6431 (class class class)co 7269 Topctop 22038 Clsdccld 22163 clsccl 22165 Cn ccn 22371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-iin 4933 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-f1 6436 df-fo 6437 df-f1o 6438 df-fv 6439 df-ov 7272 df-oprab 7273 df-mpo 7274 df-map 8598 df-top 22039 df-topon 22056 df-cld 22166 df-cls 22168 df-cn 22374 |
This theorem is referenced by: cnclsi 22419 cncls2 22420 imasncls 22839 hmeocls 22915 clssubg 23256 |
Copyright terms: Public domain | W3C validator |