MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncls2i Structured version   Visualization version   GIF version

Theorem cncls2i 22417
Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
cncls2i.1 𝑌 = 𝐾
Assertion
Ref Expression
cncls2i ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))

Proof of Theorem cncls2i
StepHypRef Expression
1 cntop2 22388 . . . 4 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top)
2 cncls2i.1 . . . . 5 𝑌 = 𝐾
32clscld 22194 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
41, 3sylan 580 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾))
5 cnclima 22415 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
64, 5syldan 591 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽))
72sscls 22203 . . . 4 ((𝐾 ∈ Top ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
81, 7sylan 580 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆))
9 imass2 6008 . . 3 (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
108, 9syl 17 . 2 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
11 eqid 2740 . . 3 𝐽 = 𝐽
1211clsss2 22219 . 2 (((𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (𝐹𝑆) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
136, 10, 12syl2anc 584 1 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆𝑌) → ((cls‘𝐽)‘(𝐹𝑆)) ⊆ (𝐹 “ ((cls‘𝐾)‘𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wss 3892   cuni 4845  ccnv 5588  cima 5592  cfv 6431  (class class class)co 7269  Topctop 22038  Clsdccld 22163  clsccl 22165   Cn ccn 22371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-ov 7272  df-oprab 7273  df-mpo 7274  df-map 8598  df-top 22039  df-topon 22056  df-cld 22166  df-cls 22168  df-cn 22374
This theorem is referenced by:  cnclsi  22419  cncls2  22420  imasncls  22839  hmeocls  22915  clssubg  23256
  Copyright terms: Public domain W3C validator