| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cncls2i | Structured version Visualization version GIF version | ||
| Description: Property of the preimage of a closure. (Contributed by Mario Carneiro, 25-Aug-2015.) |
| Ref | Expression |
|---|---|
| cncls2i.1 | ⊢ 𝑌 = ∪ 𝐾 |
| Ref | Expression |
|---|---|
| cncls2i | ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntop2 23135 | . . . 4 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐾 ∈ Top) | |
| 2 | cncls2i.1 | . . . . 5 ⊢ 𝑌 = ∪ 𝐾 | |
| 3 | 2 | clscld 22941 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
| 4 | 1, 3 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) |
| 5 | cnclima 23162 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ ((cls‘𝐾)‘𝑆) ∈ (Clsd‘𝐾)) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) | |
| 6 | 4, 5 | syldan 591 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽)) |
| 7 | 2 | sscls 22950 | . . . 4 ⊢ ((𝐾 ∈ Top ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
| 8 | 1, 7 | sylan 580 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → 𝑆 ⊆ ((cls‘𝐾)‘𝑆)) |
| 9 | imass2 6076 | . . 3 ⊢ (𝑆 ⊆ ((cls‘𝐾)‘𝑆) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) | |
| 10 | 8, 9 | syl 17 | . 2 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
| 11 | eqid 2730 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 12 | 11 | clsss2 22966 | . 2 ⊢ (((◡𝐹 “ ((cls‘𝐾)‘𝑆)) ∈ (Clsd‘𝐽) ∧ (◡𝐹 “ 𝑆) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
| 13 | 6, 10, 12 | syl2anc 584 | 1 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ 𝑆 ⊆ 𝑌) → ((cls‘𝐽)‘(◡𝐹 “ 𝑆)) ⊆ (◡𝐹 “ ((cls‘𝐾)‘𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 ◡ccnv 5640 “ cima 5644 ‘cfv 6514 (class class class)co 7390 Topctop 22787 Clsdccld 22910 clsccl 22912 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-map 8804 df-top 22788 df-topon 22805 df-cld 22913 df-cls 22915 df-cn 23121 |
| This theorem is referenced by: cnclsi 23166 cncls2 23167 imasncls 23586 hmeocls 23662 clssubg 24003 |
| Copyright terms: Public domain | W3C validator |