![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjssposi | Structured version Visualization version GIF version |
Description: Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of [Halmos] p. 48. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjco.1 | โข ๐บ โ Cโ |
pjco.2 | โข ๐ป โ Cโ |
Ref | Expression |
---|---|
pjssposi | โข (โ๐ฅ โ โ 0 โค ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) โ ๐บ โ ๐ป) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.2 | . . . . . . . 8 โข ๐ป โ Cโ | |
2 | 1 | pjhcli 31180 | . . . . . . 7 โข (๐ฅ โ โ โ ((projโโ๐ป)โ๐ฅ) โ โ) |
3 | normcl 30887 | . . . . . . 7 โข (((projโโ๐ป)โ๐ฅ) โ โ โ (normโโ((projโโ๐ป)โ๐ฅ)) โ โ) | |
4 | 2, 3 | syl 17 | . . . . . 6 โข (๐ฅ โ โ โ (normโโ((projโโ๐ป)โ๐ฅ)) โ โ) |
5 | 4 | resqcld 14095 | . . . . 5 โข (๐ฅ โ โ โ ((normโโ((projโโ๐ป)โ๐ฅ))โ2) โ โ) |
6 | pjco.1 | . . . . . . . 8 โข ๐บ โ Cโ | |
7 | 6 | pjhcli 31180 | . . . . . . 7 โข (๐ฅ โ โ โ ((projโโ๐บ)โ๐ฅ) โ โ) |
8 | normcl 30887 | . . . . . . 7 โข (((projโโ๐บ)โ๐ฅ) โ โ โ (normโโ((projโโ๐บ)โ๐ฅ)) โ โ) | |
9 | 7, 8 | syl 17 | . . . . . 6 โข (๐ฅ โ โ โ (normโโ((projโโ๐บ)โ๐ฅ)) โ โ) |
10 | 9 | resqcld 14095 | . . . . 5 โข (๐ฅ โ โ โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2) โ โ) |
11 | 5, 10 | subge0d 11808 | . . . 4 โข (๐ฅ โ โ โ (0 โค (((normโโ((projโโ๐ป)โ๐ฅ))โ2) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2)) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2) โค ((normโโ((projโโ๐ป)โ๐ฅ))โ2))) |
12 | 1 | pjfi 31466 | . . . . . . . 8 โข (projโโ๐ป): โโถ โ |
13 | 6 | pjfi 31466 | . . . . . . . 8 โข (projโโ๐บ): โโถ โ |
14 | hodval 31504 | . . . . . . . 8 โข (((projโโ๐ป): โโถ โ โง (projโโ๐บ): โโถ โ โง ๐ฅ โ โ) โ (((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) = (((projโโ๐ป)โ๐ฅ) โโ ((projโโ๐บ)โ๐ฅ))) | |
15 | 12, 13, 14 | mp3an12 1447 | . . . . . . 7 โข (๐ฅ โ โ โ (((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) = (((projโโ๐ป)โ๐ฅ) โโ ((projโโ๐บ)โ๐ฅ))) |
16 | 15 | oveq1d 7420 | . . . . . 6 โข (๐ฅ โ โ โ ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) = ((((projโโ๐ป)โ๐ฅ) โโ ((projโโ๐บ)โ๐ฅ)) ยทih ๐ฅ)) |
17 | id 22 | . . . . . . 7 โข (๐ฅ โ โ โ ๐ฅ โ โ) | |
18 | his2sub 30854 | . . . . . . 7 โข ((((projโโ๐ป)โ๐ฅ) โ โ โง ((projโโ๐บ)โ๐ฅ) โ โ โง ๐ฅ โ โ) โ ((((projโโ๐ป)โ๐ฅ) โโ ((projโโ๐บ)โ๐ฅ)) ยทih ๐ฅ) = ((((projโโ๐ป)โ๐ฅ) ยทih ๐ฅ) โ (((projโโ๐บ)โ๐ฅ) ยทih ๐ฅ))) | |
19 | 2, 7, 17, 18 | syl3anc 1368 | . . . . . 6 โข (๐ฅ โ โ โ ((((projโโ๐ป)โ๐ฅ) โโ ((projโโ๐บ)โ๐ฅ)) ยทih ๐ฅ) = ((((projโโ๐ป)โ๐ฅ) ยทih ๐ฅ) โ (((projโโ๐บ)โ๐ฅ) ยทih ๐ฅ))) |
20 | 1 | pjinormi 31449 | . . . . . . 7 โข (๐ฅ โ โ โ (((projโโ๐ป)โ๐ฅ) ยทih ๐ฅ) = ((normโโ((projโโ๐ป)โ๐ฅ))โ2)) |
21 | 6 | pjinormi 31449 | . . . . . . 7 โข (๐ฅ โ โ โ (((projโโ๐บ)โ๐ฅ) ยทih ๐ฅ) = ((normโโ((projโโ๐บ)โ๐ฅ))โ2)) |
22 | 20, 21 | oveq12d 7423 | . . . . . 6 โข (๐ฅ โ โ โ ((((projโโ๐ป)โ๐ฅ) ยทih ๐ฅ) โ (((projโโ๐บ)โ๐ฅ) ยทih ๐ฅ)) = (((normโโ((projโโ๐ป)โ๐ฅ))โ2) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2))) |
23 | 16, 19, 22 | 3eqtrd 2770 | . . . . 5 โข (๐ฅ โ โ โ ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) = (((normโโ((projโโ๐ป)โ๐ฅ))โ2) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2))) |
24 | 23 | breq2d 5153 | . . . 4 โข (๐ฅ โ โ โ (0 โค ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) โ 0 โค (((normโโ((projโโ๐ป)โ๐ฅ))โ2) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2)))) |
25 | normge0 30888 | . . . . . 6 โข (((projโโ๐บ)โ๐ฅ) โ โ โ 0 โค (normโโ((projโโ๐บ)โ๐ฅ))) | |
26 | 7, 25 | syl 17 | . . . . 5 โข (๐ฅ โ โ โ 0 โค (normโโ((projโโ๐บ)โ๐ฅ))) |
27 | normge0 30888 | . . . . . 6 โข (((projโโ๐ป)โ๐ฅ) โ โ โ 0 โค (normโโ((projโโ๐ป)โ๐ฅ))) | |
28 | 2, 27 | syl 17 | . . . . 5 โข (๐ฅ โ โ โ 0 โค (normโโ((projโโ๐ป)โ๐ฅ))) |
29 | 9, 4, 26, 28 | le2sqd 14225 | . . . 4 โข (๐ฅ โ โ โ ((normโโ((projโโ๐บ)โ๐ฅ)) โค (normโโ((projโโ๐ป)โ๐ฅ)) โ ((normโโ((projโโ๐บ)โ๐ฅ))โ2) โค ((normโโ((projโโ๐ป)โ๐ฅ))โ2))) |
30 | 11, 24, 29 | 3bitr4d 311 | . . 3 โข (๐ฅ โ โ โ (0 โค ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) โ (normโโ((projโโ๐บ)โ๐ฅ)) โค (normโโ((projโโ๐ป)โ๐ฅ)))) |
31 | 30 | ralbiia 3085 | . 2 โข (โ๐ฅ โ โ 0 โค ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) โ โ๐ฅ โ โ (normโโ((projโโ๐บ)โ๐ฅ)) โค (normโโ((projโโ๐ป)โ๐ฅ))) |
32 | 6, 1 | pjnormssi 31930 | . 2 โข (๐บ โ ๐ป โ โ๐ฅ โ โ (normโโ((projโโ๐บ)โ๐ฅ)) โค (normโโ((projโโ๐ป)โ๐ฅ))) |
33 | 31, 32 | bitr4i 278 | 1 โข (โ๐ฅ โ โ 0 โค ((((projโโ๐ป) โop (projโโ๐บ))โ๐ฅ) ยทih ๐ฅ) โ ๐บ โ ๐ป) |
Colors of variables: wff setvar class |
Syntax hints: โ wb 205 = wceq 1533 โ wcel 2098 โwral 3055 โ wss 3943 class class class wbr 5141 โถwf 6533 โcfv 6537 (class class class)co 7405 โcr 11111 0cc0 11112 โค cle 11253 โ cmin 11448 2c2 12271 โcexp 14032 โchba 30681 ยทih csp 30684 normโcno 30685 โโ cmv 30687 Cโ cch 30691 projโcpjh 30699 โop chod 30702 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cc 10432 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 ax-addf 11191 ax-mulf 11192 ax-hilex 30761 ax-hfvadd 30762 ax-hvcom 30763 ax-hvass 30764 ax-hv0cl 30765 ax-hvaddid 30766 ax-hfvmul 30767 ax-hvmulid 30768 ax-hvmulass 30769 ax-hvdistr1 30770 ax-hvdistr2 30771 ax-hvmul0 30772 ax-hfi 30841 ax-his1 30844 ax-his2 30845 ax-his3 30846 ax-his4 30847 ax-hcompl 30964 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7667 df-om 7853 df-1st 7974 df-2nd 7975 df-supp 8147 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-2o 8468 df-oadd 8471 df-omul 8472 df-er 8705 df-map 8824 df-pm 8825 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-fi 9408 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-uz 12827 df-q 12937 df-rp 12981 df-xneg 13098 df-xadd 13099 df-xmul 13100 df-ioo 13334 df-ico 13336 df-icc 13337 df-fz 13491 df-fzo 13634 df-fl 13763 df-seq 13973 df-exp 14033 df-hash 14296 df-cj 15052 df-re 15053 df-im 15054 df-sqrt 15188 df-abs 15189 df-clim 15438 df-rlim 15439 df-sum 15639 df-struct 17089 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-plusg 17219 df-mulr 17220 df-starv 17221 df-sca 17222 df-vsca 17223 df-ip 17224 df-tset 17225 df-ple 17226 df-ds 17228 df-unif 17229 df-hom 17230 df-cco 17231 df-rest 17377 df-topn 17378 df-0g 17396 df-gsum 17397 df-topgen 17398 df-pt 17399 df-prds 17402 df-xrs 17457 df-qtop 17462 df-imas 17463 df-xps 17465 df-mre 17539 df-mrc 17540 df-acs 17542 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18714 df-mulg 18996 df-cntz 19233 df-cmn 19702 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-fbas 21237 df-fg 21238 df-cnfld 21241 df-top 22751 df-topon 22768 df-topsp 22790 df-bases 22804 df-cld 22878 df-ntr 22879 df-cls 22880 df-nei 22957 df-cn 23086 df-cnp 23087 df-lm 23088 df-haus 23174 df-tx 23421 df-hmeo 23614 df-fil 23705 df-fm 23797 df-flim 23798 df-flf 23799 df-xms 24181 df-ms 24182 df-tms 24183 df-cfil 25138 df-cau 25139 df-cmet 25140 df-grpo 30255 df-gid 30256 df-ginv 30257 df-gdiv 30258 df-ablo 30307 df-vc 30321 df-nv 30354 df-va 30357 df-ba 30358 df-sm 30359 df-0v 30360 df-vs 30361 df-nmcv 30362 df-ims 30363 df-dip 30463 df-ssp 30484 df-ph 30575 df-cbn 30625 df-hnorm 30730 df-hba 30731 df-hvsub 30733 df-hlim 30734 df-hcau 30735 df-sh 30969 df-ch 30983 df-oc 31014 df-ch0 31015 df-shs 31070 df-pjh 31157 df-hodif 31494 |
This theorem is referenced by: pjordi 31935 pjssdif2i 31936 pjssdif1i 31937 |
Copyright terms: Public domain | W3C validator |