![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > pjssposi | Structured version Visualization version GIF version |
Description: Projector ordering can be expressed by the subset relationship between their projection subspaces. (i)<->(iii) of Theorem 29.2 of [Halmos] p. 48. (Contributed by NM, 2-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pjco.1 | ⊢ 𝐺 ∈ Cℋ |
pjco.2 | ⊢ 𝐻 ∈ Cℋ |
Ref | Expression |
---|---|
pjssposi | ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ 𝐺 ⊆ 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pjco.2 | . . . . . . . 8 ⊢ 𝐻 ∈ Cℋ | |
2 | 1 | pjhcli 28828 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐻)‘𝑥) ∈ ℋ) |
3 | normcl 28533 | . . . . . . 7 ⊢ (((projℎ‘𝐻)‘𝑥) ∈ ℋ → (normℎ‘((projℎ‘𝐻)‘𝑥)) ∈ ℝ) | |
4 | 2, 3 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (normℎ‘((projℎ‘𝐻)‘𝑥)) ∈ ℝ) |
5 | 4 | resqcld 13338 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((normℎ‘((projℎ‘𝐻)‘𝑥))↑2) ∈ ℝ) |
6 | pjco.1 | . . . . . . . 8 ⊢ 𝐺 ∈ Cℋ | |
7 | 6 | pjhcli 28828 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → ((projℎ‘𝐺)‘𝑥) ∈ ℋ) |
8 | normcl 28533 | . . . . . . 7 ⊢ (((projℎ‘𝐺)‘𝑥) ∈ ℋ → (normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → (normℎ‘((projℎ‘𝐺)‘𝑥)) ∈ ℝ) |
10 | 9 | resqcld 13338 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2) ∈ ℝ) |
11 | 5, 10 | subge0d 10949 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0 ≤ (((normℎ‘((projℎ‘𝐻)‘𝑥))↑2) − ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2)) ↔ ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2) ≤ ((normℎ‘((projℎ‘𝐻)‘𝑥))↑2))) |
12 | 1 | pjfi 29114 | . . . . . . . 8 ⊢ (projℎ‘𝐻): ℋ⟶ ℋ |
13 | 6 | pjfi 29114 | . . . . . . . 8 ⊢ (projℎ‘𝐺): ℋ⟶ ℋ |
14 | hodval 29152 | . . . . . . . 8 ⊢ (((projℎ‘𝐻): ℋ⟶ ℋ ∧ (projℎ‘𝐺): ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥))) | |
15 | 12, 13, 14 | mp3an12 1579 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) = (((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥))) |
16 | 15 | oveq1d 6925 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) = ((((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥)) ·ih 𝑥)) |
17 | id 22 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → 𝑥 ∈ ℋ) | |
18 | his2sub 28500 | . . . . . . 7 ⊢ ((((projℎ‘𝐻)‘𝑥) ∈ ℋ ∧ ((projℎ‘𝐺)‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥)) ·ih 𝑥) = ((((projℎ‘𝐻)‘𝑥) ·ih 𝑥) − (((projℎ‘𝐺)‘𝑥) ·ih 𝑥))) | |
19 | 2, 7, 17, 18 | syl3anc 1494 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻)‘𝑥) −ℎ ((projℎ‘𝐺)‘𝑥)) ·ih 𝑥) = ((((projℎ‘𝐻)‘𝑥) ·ih 𝑥) − (((projℎ‘𝐺)‘𝑥) ·ih 𝑥))) |
20 | 1 | pjinormi 29097 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐻)‘𝑥) ·ih 𝑥) = ((normℎ‘((projℎ‘𝐻)‘𝑥))↑2)) |
21 | 6 | pjinormi 29097 | . . . . . . 7 ⊢ (𝑥 ∈ ℋ → (((projℎ‘𝐺)‘𝑥) ·ih 𝑥) = ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2)) |
22 | 20, 21 | oveq12d 6928 | . . . . . 6 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻)‘𝑥) ·ih 𝑥) − (((projℎ‘𝐺)‘𝑥) ·ih 𝑥)) = (((normℎ‘((projℎ‘𝐻)‘𝑥))↑2) − ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2))) |
23 | 16, 19, 22 | 3eqtrd 2865 | . . . . 5 ⊢ (𝑥 ∈ ℋ → ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) = (((normℎ‘((projℎ‘𝐻)‘𝑥))↑2) − ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2))) |
24 | 23 | breq2d 4887 | . . . 4 ⊢ (𝑥 ∈ ℋ → (0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ 0 ≤ (((normℎ‘((projℎ‘𝐻)‘𝑥))↑2) − ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2)))) |
25 | normge0 28534 | . . . . . 6 ⊢ (((projℎ‘𝐺)‘𝑥) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐺)‘𝑥))) | |
26 | 7, 25 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐺)‘𝑥))) |
27 | normge0 28534 | . . . . . 6 ⊢ (((projℎ‘𝐻)‘𝑥) ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝑥))) | |
28 | 2, 27 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ ℋ → 0 ≤ (normℎ‘((projℎ‘𝐻)‘𝑥))) |
29 | 9, 4, 26, 28 | le2sqd 13347 | . . . 4 ⊢ (𝑥 ∈ ℋ → ((normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ (normℎ‘((projℎ‘𝐻)‘𝑥)) ↔ ((normℎ‘((projℎ‘𝐺)‘𝑥))↑2) ≤ ((normℎ‘((projℎ‘𝐻)‘𝑥))↑2))) |
30 | 11, 24, 29 | 3bitr4d 303 | . . 3 ⊢ (𝑥 ∈ ℋ → (0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ (normℎ‘((projℎ‘𝐻)‘𝑥)))) |
31 | 30 | ralbiia 3188 | . 2 ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ ∀𝑥 ∈ ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ (normℎ‘((projℎ‘𝐻)‘𝑥))) |
32 | 6, 1 | pjnormssi 29578 | . 2 ⊢ (𝐺 ⊆ 𝐻 ↔ ∀𝑥 ∈ ℋ (normℎ‘((projℎ‘𝐺)‘𝑥)) ≤ (normℎ‘((projℎ‘𝐻)‘𝑥))) |
33 | 31, 32 | bitr4i 270 | 1 ⊢ (∀𝑥 ∈ ℋ 0 ≤ ((((projℎ‘𝐻) −op (projℎ‘𝐺))‘𝑥) ·ih 𝑥) ↔ 𝐺 ⊆ 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 = wceq 1656 ∈ wcel 2164 ∀wral 3117 ⊆ wss 3798 class class class wbr 4875 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ℝcr 10258 0cc0 10259 ≤ cle 10399 − cmin 10592 2c2 11413 ↑cexp 13161 ℋchba 28327 ·ih csp 28330 normℎcno 28331 −ℎ cmv 28333 Cℋ cch 28337 projℎcpjh 28345 −op chod 28348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-inf2 8822 ax-cc 9579 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-addf 10338 ax-mulf 10339 ax-hilex 28407 ax-hfvadd 28408 ax-hvcom 28409 ax-hvass 28410 ax-hv0cl 28411 ax-hvaddid 28412 ax-hfvmul 28413 ax-hvmulid 28414 ax-hvmulass 28415 ax-hvdistr1 28416 ax-hvdistr2 28417 ax-hvmul0 28418 ax-hfi 28487 ax-his1 28490 ax-his2 28491 ax-his3 28492 ax-his4 28493 ax-hcompl 28610 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-fal 1670 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-iin 4745 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-se 5306 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-isom 6136 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-supp 7565 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-2o 7832 df-oadd 7835 df-omul 7836 df-er 8014 df-map 8129 df-pm 8130 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-fsupp 8551 df-fi 8592 df-sup 8623 df-inf 8624 df-oi 8691 df-card 9085 df-acn 9088 df-cda 9312 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-q 12079 df-rp 12120 df-xneg 12239 df-xadd 12240 df-xmul 12241 df-ioo 12474 df-ico 12476 df-icc 12477 df-fz 12627 df-fzo 12768 df-fl 12895 df-seq 13103 df-exp 13162 df-hash 13418 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-clim 14603 df-rlim 14604 df-sum 14801 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-sets 16236 df-ress 16237 df-plusg 16325 df-mulr 16326 df-starv 16327 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-unif 16335 df-hom 16336 df-cco 16337 df-rest 16443 df-topn 16444 df-0g 16462 df-gsum 16463 df-topgen 16464 df-pt 16465 df-prds 16468 df-xrs 16522 df-qtop 16527 df-imas 16528 df-xps 16530 df-mre 16606 df-mrc 16607 df-acs 16609 df-mgm 17602 df-sgrp 17644 df-mnd 17655 df-submnd 17696 df-mulg 17902 df-cntz 18107 df-cmn 18555 df-psmet 20105 df-xmet 20106 df-met 20107 df-bl 20108 df-mopn 20109 df-fbas 20110 df-fg 20111 df-cnfld 20114 df-top 21076 df-topon 21093 df-topsp 21115 df-bases 21128 df-cld 21201 df-ntr 21202 df-cls 21203 df-nei 21280 df-cn 21409 df-cnp 21410 df-lm 21411 df-haus 21497 df-tx 21743 df-hmeo 21936 df-fil 22027 df-fm 22119 df-flim 22120 df-flf 22121 df-xms 22502 df-ms 22503 df-tms 22504 df-cfil 23430 df-cau 23431 df-cmet 23432 df-grpo 27899 df-gid 27900 df-ginv 27901 df-gdiv 27902 df-ablo 27951 df-vc 27965 df-nv 27998 df-va 28001 df-ba 28002 df-sm 28003 df-0v 28004 df-vs 28005 df-nmcv 28006 df-ims 28007 df-dip 28107 df-ssp 28128 df-ph 28219 df-cbn 28270 df-hnorm 28376 df-hba 28377 df-hvsub 28379 df-hlim 28380 df-hcau 28381 df-sh 28615 df-ch 28629 df-oc 28660 df-ch0 28661 df-shs 28718 df-pjh 28805 df-hodif 29142 |
This theorem is referenced by: pjordi 29583 pjssdif2i 29584 pjssdif1i 29585 |
Copyright terms: Public domain | W3C validator |