Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > icossre | Structured version Visualization version GIF version |
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
icossre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elico2 13125 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimp3a 1467 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) |
3 | 2 | simp1d 1140 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1119 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3931 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2109 ⊆ wss 3891 class class class wbr 5078 (class class class)co 7268 ℝcr 10854 ℝ*cxr 10992 < clt 10993 ≤ cle 10994 [,)cico 13063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-pre-lttri 10929 ax-pre-lttrn 10930 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-po 5502 df-so 5503 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-ico 13067 |
This theorem is referenced by: icoshftf1o 13188 ico01fl0 13520 rexico 15046 rlim3 15188 fprodge1 15686 ovolicopnf 24669 dvfsumrlim2 25177 tanord1 25674 chebbnd1 26601 chebbnd2 26606 dchrisumlem3 26620 pntpbnd1 26715 pntibndlem2 26720 sxbrsigalem0 32217 dya2iocress 32220 dya2iocucvr 32230 sitmcl 32297 tan2h 35748 icoopn 43017 limciccioolb 43116 ltmod 43133 limcresioolb 43138 limsupresre 43191 limsupresico 43195 liminfresico 43266 fourierdlem32 43634 fourierdlem46 43647 fourierdlem48 43649 fourierdlem93 43694 fouriersw 43726 fouriercn 43727 hoissre 44036 hoissrrn2 44070 hoidmv1lelem2 44084 ovnlecvr2 44102 hspdifhsp 44108 hoiqssbllem2 44115 hspmbllem2 44119 iinhoiicclem 44165 |
Copyright terms: Public domain | W3C validator |