![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossre | Structured version Visualization version GIF version |
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
icossre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elico2 12482 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimp3a 1594 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) |
3 | 2 | simp1d 1173 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1151 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3802 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 ∈ wcel 2157 ⊆ wss 3767 class class class wbr 4841 (class class class)co 6876 ℝcr 10221 ℝ*cxr 10360 < clt 10361 ≤ cle 10362 [,)cico 12422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 ax-un 7181 ax-cnex 10278 ax-resscn 10279 ax-pre-lttri 10296 ax-pre-lttrn 10297 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-nel 3073 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-pw 4349 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-po 5231 df-so 5232 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-er 7980 df-en 8194 df-dom 8195 df-sdom 8196 df-pnf 10363 df-mnf 10364 df-xr 10365 df-ltxr 10366 df-le 10367 df-ico 12426 |
This theorem is referenced by: icoshftf1o 12543 ico01fl0 12871 rexico 14431 rlim3 14567 fprodge1 15059 ovolicopnf 23629 dvfsumrlim2 24133 tanord1 24622 chebbnd1 25510 chebbnd2 25515 dchrisumlem3 25529 pntpbnd1 25624 pntibndlem2 25629 sxbrsigalem0 30841 dya2iocress 30844 dya2iocucvr 30854 sitmcl 30921 tan2h 33882 icoopn 40484 limciccioolb 40585 ltmod 40602 limcresioolb 40607 limsupresre 40660 limsupresico 40664 liminfresico 40735 fourierdlem32 41087 fourierdlem46 41100 fourierdlem48 41102 fourierdlem93 41147 fouriersw 41179 fouriercn 41180 hoissre 41492 hoissrrn2 41526 hoidmv1lelem2 41540 ovnlecvr2 41558 hspdifhsp 41564 hoiqssbllem2 41571 hspmbllem2 41575 iinhoiicclem 41621 |
Copyright terms: Public domain | W3C validator |