![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > icossre | Structured version Visualization version GIF version |
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) |
Ref | Expression |
---|---|
icossre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elico2 13393 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | |
2 | 1 | biimp3a 1468 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) |
3 | 2 | simp1d 1141 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ) |
4 | 3 | 3expia 1120 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ)) |
5 | 4 | ssrdv 3988 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 ⊆ wss 3948 class class class wbr 5148 (class class class)co 7412 ℝcr 11112 ℝ*cxr 11252 < clt 11253 ≤ cle 11254 [,)cico 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-pre-lttri 11187 ax-pre-lttrn 11188 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-ico 13335 |
This theorem is referenced by: icoshftf1o 13456 ico01fl0 13789 rexico 15305 rlim3 15447 fprodge1 15944 ovolicopnf 25274 dvfsumrlim2 25785 tanord1 26283 chebbnd1 27212 chebbnd2 27217 dchrisumlem3 27231 pntpbnd1 27326 pntibndlem2 27331 sxbrsigalem0 33569 dya2iocress 33572 dya2iocucvr 33582 sitmcl 33649 tan2h 36784 icoopn 44537 limciccioolb 44636 ltmod 44653 limcresioolb 44658 limsupresre 44711 limsupresico 44715 liminfresico 44786 fourierdlem32 45154 fourierdlem46 45167 fourierdlem48 45169 fourierdlem93 45214 fouriersw 45246 fouriercn 45247 hoissre 45559 hoissrrn2 45593 hoidmv1lelem2 45607 ovnlecvr2 45625 hspdifhsp 45631 hoiqssbllem2 45638 hspmbllem2 45642 iinhoiicclem 45688 |
Copyright terms: Public domain | W3C validator |