MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossre Structured version   Visualization version   GIF version

Theorem icossre 13412
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)

Proof of Theorem icossre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elico2 13395 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
21biimp3a 1468 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
32simp1d 1141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
433expia 1120 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3988 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2105  wss 3948   class class class wbr 5148  (class class class)co 7412  cr 11115  *cxr 11254   < clt 11255  cle 11256  [,)cico 13333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-pre-lttri 11190  ax-pre-lttrn 11191
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-ico 13337
This theorem is referenced by:  icoshftf1o  13458  ico01fl0  13791  rexico  15307  rlim3  15449  fprodge1  15946  ovolicopnf  25374  dvfsumrlim2  25888  tanord1  26387  chebbnd1  27320  chebbnd2  27325  dchrisumlem3  27339  pntpbnd1  27434  pntibndlem2  27439  sxbrsigalem0  33736  dya2iocress  33739  dya2iocucvr  33749  sitmcl  33816  tan2h  36947  icoopn  44700  limciccioolb  44799  ltmod  44816  limcresioolb  44821  limsupresre  44874  limsupresico  44878  liminfresico  44949  fourierdlem32  45317  fourierdlem46  45330  fourierdlem48  45332  fourierdlem93  45377  fouriersw  45409  fouriercn  45410  hoissre  45722  hoissrrn2  45756  hoidmv1lelem2  45770  ovnlecvr2  45788  hspdifhsp  45794  hoiqssbllem2  45801  hspmbllem2  45805  iinhoiicclem  45851
  Copyright terms: Public domain W3C validator