MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  icossre Structured version   Visualization version   GIF version

Theorem icossre 13410
Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.)
Assertion
Ref Expression
icossre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)

Proof of Theorem icossre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elico2 13393 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵)))
21biimp3a 1468 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥 < 𝐵))
32simp1d 1141 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ)
433expia 1120 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3988 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2105  wss 3948   class class class wbr 5148  (class class class)co 7412  cr 11112  *cxr 11252   < clt 11253  cle 11254  [,)cico 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-cnex 11169  ax-resscn 11170  ax-pre-lttri 11187  ax-pre-lttrn 11188
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-ico 13335
This theorem is referenced by:  icoshftf1o  13456  ico01fl0  13789  rexico  15305  rlim3  15447  fprodge1  15944  ovolicopnf  25274  dvfsumrlim2  25785  tanord1  26283  chebbnd1  27212  chebbnd2  27217  dchrisumlem3  27231  pntpbnd1  27326  pntibndlem2  27331  sxbrsigalem0  33569  dya2iocress  33572  dya2iocucvr  33582  sitmcl  33649  tan2h  36784  icoopn  44537  limciccioolb  44636  ltmod  44653  limcresioolb  44658  limsupresre  44711  limsupresico  44715  liminfresico  44786  fourierdlem32  45154  fourierdlem46  45167  fourierdlem48  45169  fourierdlem93  45214  fouriersw  45246  fouriercn  45247  hoissre  45559  hoissrrn2  45593  hoidmv1lelem2  45607  ovnlecvr2  45625  hspdifhsp  45631  hoiqssbllem2  45638  hspmbllem2  45642  iinhoiicclem  45688
  Copyright terms: Public domain W3C validator