|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > icossre | Structured version Visualization version GIF version | ||
| Description: A closed-below interval with real lower bound is a set of reals. (Contributed by Mario Carneiro, 14-Jun-2014.) | 
| Ref | Expression | 
|---|---|
| icossre | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elico2 13452 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵))) | |
| 2 | 1 | biimp3a 1470 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 < 𝐵)) | 
| 3 | 2 | simp1d 1142 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ∧ 𝑥 ∈ (𝐴[,)𝐵)) → 𝑥 ∈ ℝ) | 
| 4 | 3 | 3expia 1121 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝑥 ∈ (𝐴[,)𝐵) → 𝑥 ∈ ℝ)) | 
| 5 | 4 | ssrdv 3988 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ⊆ ℝ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 ⊆ wss 3950 class class class wbr 5142 (class class class)co 7432 ℝcr 11155 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 [,)cico 13390 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ico 13394 | 
| This theorem is referenced by: icoshftf1o 13515 ico01fl0 13860 rexico 15393 rlim3 15535 fprodge1 16032 ovolicopnf 25560 dvfsumrlim2 26074 tanord1 26580 chebbnd1 27517 chebbnd2 27522 dchrisumlem3 27536 pntpbnd1 27631 pntibndlem2 27636 sxbrsigalem0 34274 dya2iocress 34277 dya2iocucvr 34287 sitmcl 34354 tan2h 37620 icoopn 45543 limciccioolb 45641 ltmod 45658 limcresioolb 45663 limsupresre 45716 limsupresico 45720 liminfresico 45791 fourierdlem32 46159 fourierdlem46 46172 fourierdlem48 46174 fourierdlem93 46219 fouriersw 46251 fouriercn 46252 hoissre 46564 hoissrrn2 46598 hoidmv1lelem2 46612 ovnlecvr2 46630 hspdifhsp 46636 hoiqssbllem2 46643 hspmbllem2 46647 iinhoiicclem 46693 | 
| Copyright terms: Public domain | W3C validator |