![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartleu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartleu | ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | nnnn0 12517 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
3 | elnn0uz 12905 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
4 | 2, 3 | sylib 217 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘0)) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
6 | fzisfzounsn 13785 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
8 | 7 | eleq2d 2811 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀}))) |
9 | elun 4145 | . . . . 5 ⊢ (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
11 | velsn 4646 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
13 | 12 | orbi2d 913 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
14 | 8, 10, 13 | 3bitrd 304 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
15 | 1 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
16 | iccpartgtprec.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
17 | 16 | adantr 479 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
18 | fzossfz 13691 | . . . . . . . . . 10 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
20 | 19 | sselda 3976 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
21 | 15, 17, 20 | iccpartxr 46898 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ∈ ℝ*) |
22 | nn0fz0 13639 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (0...𝑀)) | |
23 | 2, 22 | sylib 217 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
24 | 1, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
25 | 1, 16, 24 | iccpartxr 46898 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ∈ ℝ*) |
26 | 25 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑀) ∈ ℝ*) |
27 | 1, 16 | iccpartltu 46904 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
28 | fveq2 6896 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
29 | 28 | breq1d 5159 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 29 | rspccv 3603 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 31 | imp 405 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
33 | 21, 26, 32 | xrltled 13169 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
34 | 33 | expcom 412 | . . . . 5 ⊢ (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
35 | fveq2 6896 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
36 | 35 | adantr 479 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
37 | 25 | xrleidd 13171 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
38 | 37 | adantl 480 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
39 | 36, 38 | eqbrtrd 5171 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
40 | 39 | ex 411 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
41 | 34, 40 | jaoi 855 | . . . 4 ⊢ ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
42 | 41 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
43 | 14, 42 | sylbid 239 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
44 | 43 | ralrimiv 3134 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∨ wo 845 = wceq 1533 ∈ wcel 2098 ∀wral 3050 ∪ cun 3942 ⊆ wss 3944 {csn 4630 class class class wbr 5149 ‘cfv 6549 (class class class)co 7419 0cc0 11145 ℝ*cxr 11284 < clt 11285 ≤ cle 11286 ℕcn 12250 ℕ0cn0 12510 ℤ≥cuz 12860 ...cfz 13524 ..^cfzo 13667 RePartciccp 46892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11201 ax-resscn 11202 ax-1cn 11203 ax-icn 11204 ax-addcl 11205 ax-addrcl 11206 ax-mulcl 11207 ax-mulrcl 11208 ax-mulcom 11209 ax-addass 11210 ax-mulass 11211 ax-distr 11212 ax-i2m1 11213 ax-1ne0 11214 ax-1rid 11215 ax-rnegex 11216 ax-rrecex 11217 ax-cnre 11218 ax-pre-lttri 11219 ax-pre-lttrn 11220 ax-pre-ltadd 11221 ax-pre-mulgt0 11222 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-1st 7994 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11287 df-mnf 11288 df-xr 11289 df-ltxr 11290 df-le 11291 df-sub 11483 df-neg 11484 df-nn 12251 df-2 12313 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-iccp 46893 |
This theorem is referenced by: iccpartrn 46909 iccpartiun 46913 iccpartdisj 46916 |
Copyright terms: Public domain | W3C validator |