Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartleu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartleu | ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | nnnn0 12240 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
3 | elnn0uz 12623 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
4 | 2, 3 | sylib 217 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘0)) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
6 | fzisfzounsn 13499 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
8 | 7 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀}))) |
9 | elun 4083 | . . . . 5 ⊢ (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
11 | velsn 4577 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
13 | 12 | orbi2d 913 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
14 | 8, 10, 13 | 3bitrd 305 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
15 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
16 | iccpartgtprec.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
18 | fzossfz 13406 | . . . . . . . . . 10 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
20 | 19 | sselda 3921 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
21 | 15, 17, 20 | iccpartxr 44871 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ∈ ℝ*) |
22 | nn0fz0 13354 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (0...𝑀)) | |
23 | 2, 22 | sylib 217 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
24 | 1, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
25 | 1, 16, 24 | iccpartxr 44871 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ∈ ℝ*) |
26 | 25 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑀) ∈ ℝ*) |
27 | 1, 16 | iccpartltu 44877 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
28 | fveq2 6774 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
29 | 28 | breq1d 5084 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 29 | rspccv 3558 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 31 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
33 | 21, 26, 32 | xrltled 12884 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
34 | 33 | expcom 414 | . . . . 5 ⊢ (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
35 | fveq2 6774 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
36 | 35 | adantr 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
37 | 25 | xrleidd 12886 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
38 | 37 | adantl 482 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
39 | 36, 38 | eqbrtrd 5096 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
40 | 39 | ex 413 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
41 | 34, 40 | jaoi 854 | . . . 4 ⊢ ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
42 | 41 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
43 | 14, 42 | sylbid 239 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
44 | 43 | ralrimiv 3102 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∪ cun 3885 ⊆ wss 3887 {csn 4561 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 ℕcn 11973 ℕ0cn0 12233 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 RePartciccp 44865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-iccp 44866 |
This theorem is referenced by: iccpartrn 44882 iccpartiun 44886 iccpartdisj 44889 |
Copyright terms: Public domain | W3C validator |