| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartleu | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| Ref | Expression |
|---|---|
| iccpartleu | ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | nnnn0 12456 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
| 3 | elnn0uz 12845 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
| 4 | 2, 3 | sylib 218 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘0)) |
| 5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
| 6 | fzisfzounsn 13747 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) | |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
| 8 | 7 | eleq2d 2815 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀}))) |
| 9 | elun 4119 | . . . . 5 ⊢ (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
| 10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
| 11 | velsn 4608 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
| 12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
| 13 | 12 | orbi2d 915 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
| 14 | 8, 10, 13 | 3bitrd 305 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
| 15 | 1 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
| 16 | iccpartgtprec.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 17 | 16 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
| 18 | fzossfz 13646 | . . . . . . . . . 10 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
| 20 | 19 | sselda 3949 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 21 | 15, 17, 20 | iccpartxr 47424 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ∈ ℝ*) |
| 22 | nn0fz0 13593 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (0...𝑀)) | |
| 23 | 2, 22 | sylib 218 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
| 24 | 1, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
| 25 | 1, 16, 24 | iccpartxr 47424 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ∈ ℝ*) |
| 26 | 25 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑀) ∈ ℝ*) |
| 27 | 1, 16 | iccpartltu 47430 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
| 28 | fveq2 6861 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
| 29 | 28 | breq1d 5120 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 30 | 29 | rspccv 3588 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
| 32 | 31 | imp 406 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
| 33 | 21, 26, 32 | xrltled 13117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
| 34 | 33 | expcom 413 | . . . . 5 ⊢ (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
| 35 | fveq2 6861 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
| 36 | 35 | adantr 480 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
| 37 | 25 | xrleidd 13119 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
| 38 | 37 | adantl 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
| 39 | 36, 38 | eqbrtrd 5132 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
| 40 | 39 | ex 412 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
| 41 | 34, 40 | jaoi 857 | . . . 4 ⊢ ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
| 42 | 41 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
| 43 | 14, 42 | sylbid 240 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
| 44 | 43 | ralrimiv 3125 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∪ cun 3915 ⊆ wss 3917 {csn 4592 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 0cc0 11075 ℝ*cxr 11214 < clt 11215 ≤ cle 11216 ℕcn 12193 ℕ0cn0 12449 ℤ≥cuz 12800 ...cfz 13475 ..^cfzo 13622 RePartciccp 47418 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-iccp 47419 |
| This theorem is referenced by: iccpartrn 47435 iccpartiun 47439 iccpartdisj 47442 |
| Copyright terms: Public domain | W3C validator |