Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartleu Structured version   Visualization version   GIF version

Theorem iccpartleu 44768
Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartleu (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartleu
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 nnnn0 12170 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3 elnn0uz 12552 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 217 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
51, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
6 fzisfzounsn 13427 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
75, 6syl 17 . . . . 5 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
87eleq2d 2824 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀})))
9 elun 4079 . . . . 5 (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))
109a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})))
11 velsn 4574 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
1211a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1312orbi2d 912 . . . 4 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
148, 10, 133bitrd 304 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
151adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
16 iccpartgtprec.p . . . . . . . . 9 (𝜑𝑃 ∈ (RePart‘𝑀))
1716adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
18 fzossfz 13334 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
1918a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑀) ⊆ (0...𝑀))
2019sselda 3917 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2115, 17, 20iccpartxr 44759 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
22 nn0fz0 13283 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
232, 22sylib 217 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
241, 23syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (0...𝑀))
251, 16, 24iccpartxr 44759 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2625adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
271, 16iccpartltu 44765 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀))
28 fveq2 6756 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
2928breq1d 5080 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
3029rspccv 3549 . . . . . . . . 9 (∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
3127, 30syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
3231imp 406 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) < (𝑃𝑀))
3321, 26, 32xrltled 12813 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ≤ (𝑃𝑀))
3433expcom 413 . . . . 5 (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
35 fveq2 6756 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
3635adantr 480 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
3725xrleidd 12815 . . . . . . . 8 (𝜑 → (𝑃𝑀) ≤ (𝑃𝑀))
3837adantl 481 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑀) ≤ (𝑃𝑀))
3936, 38eqbrtrd 5092 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) ≤ (𝑃𝑀))
4039ex 412 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4134, 40jaoi 853 . . . 4 ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4241com12 32 . . 3 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4314, 42sylbid 239 . 2 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4443ralrimiv 3106 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  cun 3881  wss 3883  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  *cxr 10939   < clt 10940  cle 10941  cn 11903  0cn0 12163  cuz 12511  ...cfz 13168  ..^cfzo 13311  RePartciccp 44753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-iccp 44754
This theorem is referenced by:  iccpartrn  44770  iccpartiun  44774  iccpartdisj  44777
  Copyright terms: Public domain W3C validator