![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartleu | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
Ref | Expression |
---|---|
iccpartleu | ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | nnnn0 12420 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0) | |
3 | elnn0uz 12808 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (ℤ≥‘0)) | |
4 | 2, 3 | sylib 217 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘0)) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘0)) |
6 | fzisfzounsn 13684 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) | |
7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀})) |
8 | 7 | eleq2d 2823 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀}))) |
9 | elun 4108 | . . . . 5 ⊢ (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})) | |
10 | 9 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))) |
11 | velsn 4602 | . . . . . 6 ⊢ (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀) | |
12 | 11 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)) |
13 | 12 | orbi2d 914 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
14 | 8, 10, 13 | 3bitrd 304 | . . 3 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀))) |
15 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ) |
16 | iccpartgtprec.p | . . . . . . . . 9 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
17 | 16 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
18 | fzossfz 13591 | . . . . . . . . . 10 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (𝜑 → (0..^𝑀) ⊆ (0...𝑀)) |
20 | 19 | sselda 3944 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
21 | 15, 17, 20 | iccpartxr 45601 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ∈ ℝ*) |
22 | nn0fz0 13539 | . . . . . . . . . . 11 ⊢ (𝑀 ∈ ℕ0 ↔ 𝑀 ∈ (0...𝑀)) | |
23 | 2, 22 | sylib 217 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀)) |
24 | 1, 23 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
25 | 1, 16, 24 | iccpartxr 45601 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ∈ ℝ*) |
26 | 25 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑀) ∈ ℝ*) |
27 | 1, 16 | iccpartltu 45607 | . . . . . . . . 9 ⊢ (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀)) |
28 | fveq2 6842 | . . . . . . . . . . 11 ⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) | |
29 | 28 | breq1d 5115 | . . . . . . . . . 10 ⊢ (𝑘 = 𝑖 → ((𝑃‘𝑘) < (𝑃‘𝑀) ↔ (𝑃‘𝑖) < (𝑃‘𝑀))) |
30 | 29 | rspccv 3578 | . . . . . . . . 9 ⊢ (∀𝑘 ∈ (0..^𝑀)(𝑃‘𝑘) < (𝑃‘𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
31 | 27, 30 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘𝑖) < (𝑃‘𝑀))) |
32 | 31 | imp 407 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) < (𝑃‘𝑀)) |
33 | 21, 26, 32 | xrltled 13069 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
34 | 33 | expcom 414 | . . . . 5 ⊢ (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
35 | fveq2 6842 | . . . . . . . 8 ⊢ (𝑖 = 𝑀 → (𝑃‘𝑖) = (𝑃‘𝑀)) | |
36 | 35 | adantr 481 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) = (𝑃‘𝑀)) |
37 | 25 | xrleidd 13071 | . . . . . . . 8 ⊢ (𝜑 → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
38 | 37 | adantl 482 | . . . . . . 7 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑀) ≤ (𝑃‘𝑀)) |
39 | 36, 38 | eqbrtrd 5127 | . . . . . 6 ⊢ ((𝑖 = 𝑀 ∧ 𝜑) → (𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
40 | 39 | ex 413 | . . . . 5 ⊢ (𝑖 = 𝑀 → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
41 | 34, 40 | jaoi 855 | . . . 4 ⊢ ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
42 | 41 | com12 32 | . . 3 ⊢ (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
43 | 14, 42 | sylbid 239 | . 2 ⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘𝑖) ≤ (𝑃‘𝑀))) |
44 | 43 | ralrimiv 3142 | 1 ⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘𝑖) ≤ (𝑃‘𝑀)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ∈ wcel 2106 ∀wral 3064 ∪ cun 3908 ⊆ wss 3910 {csn 4586 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 0cc0 11051 ℝ*cxr 11188 < clt 11189 ≤ cle 11190 ℕcn 12153 ℕ0cn0 12413 ℤ≥cuz 12763 ...cfz 13424 ..^cfzo 13567 RePartciccp 45595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-iccp 45596 |
This theorem is referenced by: iccpartrn 45612 iccpartiun 45616 iccpartdisj 45619 |
Copyright terms: Public domain | W3C validator |