Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartleu Structured version   Visualization version   GIF version

Theorem iccpartleu 42252
 Description: If there is a partition, then all intermediate points and the lower and the upper bound are less than or equal to the upper bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartleu (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartleu
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . 7 (𝜑𝑀 ∈ ℕ)
2 nnnn0 11626 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
3 elnn0uz 12007 . . . . . . . 8 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 210 . . . . . . 7 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘0))
51, 4syl 17 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
6 fzisfzounsn 12875 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
75, 6syl 17 . . . . 5 (𝜑 → (0...𝑀) = ((0..^𝑀) ∪ {𝑀}))
87eleq2d 2892 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ((0..^𝑀) ∪ {𝑀})))
9 elun 3980 . . . . 5 (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}))
109a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ((0..^𝑀) ∪ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀})))
11 velsn 4413 . . . . . 6 (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀)
1211a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {𝑀} ↔ 𝑖 = 𝑀))
1312orbi2d 946 . . . 4 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 ∈ {𝑀}) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
148, 10, 133bitrd 297 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀)))
151adantr 474 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
16 iccpartgtprec.p . . . . . . . . 9 (𝜑𝑃 ∈ (RePart‘𝑀))
1716adantr 474 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
18 fzossfz 12783 . . . . . . . . . 10 (0..^𝑀) ⊆ (0...𝑀)
1918a1i 11 . . . . . . . . 9 (𝜑 → (0..^𝑀) ⊆ (0...𝑀))
2019sselda 3827 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
2115, 17, 20iccpartxr 42243 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ∈ ℝ*)
22 nn0fz0 12732 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
232, 22sylib 210 . . . . . . . . . 10 (𝑀 ∈ ℕ → 𝑀 ∈ (0...𝑀))
241, 23syl 17 . . . . . . . . 9 (𝜑𝑀 ∈ (0...𝑀))
251, 16, 24iccpartxr 42243 . . . . . . . 8 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2625adantr 474 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
271, 16iccpartltu 42249 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀))
28 fveq2 6433 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
2928breq1d 4883 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝑃𝑘) < (𝑃𝑀) ↔ (𝑃𝑖) < (𝑃𝑀)))
3029rspccv 3523 . . . . . . . . 9 (∀𝑘 ∈ (0..^𝑀)(𝑃𝑘) < (𝑃𝑀) → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
3127, 30syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃𝑖) < (𝑃𝑀)))
3231imp 397 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) < (𝑃𝑀))
3321, 26, 32xrltled 12269 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑖) ≤ (𝑃𝑀))
3433expcom 404 . . . . 5 (𝑖 ∈ (0..^𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
35 fveq2 6433 . . . . . . . 8 (𝑖 = 𝑀 → (𝑃𝑖) = (𝑃𝑀))
3635adantr 474 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) = (𝑃𝑀))
3725xrleidd 12271 . . . . . . . 8 (𝜑 → (𝑃𝑀) ≤ (𝑃𝑀))
3837adantl 475 . . . . . . 7 ((𝑖 = 𝑀𝜑) → (𝑃𝑀) ≤ (𝑃𝑀))
3936, 38eqbrtrd 4895 . . . . . 6 ((𝑖 = 𝑀𝜑) → (𝑃𝑖) ≤ (𝑃𝑀))
4039ex 403 . . . . 5 (𝑖 = 𝑀 → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4134, 40jaoi 890 . . . 4 ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝜑 → (𝑃𝑖) ≤ (𝑃𝑀)))
4241com12 32 . . 3 (𝜑 → ((𝑖 ∈ (0..^𝑀) ∨ 𝑖 = 𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4314, 42sylbid 232 . 2 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃𝑖) ≤ (𝑃𝑀)))
4443ralrimiv 3174 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃𝑖) ≤ (𝑃𝑀))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 198   ∧ wa 386   ∨ wo 880   = wceq 1658   ∈ wcel 2166  ∀wral 3117   ∪ cun 3796   ⊆ wss 3798  {csn 4397   class class class wbr 4873  ‘cfv 6123  (class class class)co 6905  0cc0 10252  ℝ*cxr 10390   < clt 10391   ≤ cle 10392  ℕcn 11350  ℕ0cn0 11618  ℤ≥cuz 11968  ...cfz 12619  ..^cfzo 12760  RePartciccp 42237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329 This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-map 8124  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-n0 11619  df-z 11705  df-uz 11969  df-fz 12620  df-fzo 12761  df-iccp 42238 This theorem is referenced by:  iccpartrn  42254  iccpartiun  42258  iccpartdisj  42261
 Copyright terms: Public domain W3C validator