Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiun Structured version   Visualization version   GIF version

Theorem iccpartiun 44774
Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiun (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiun
Dummy variables 𝑗 𝑘 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartiun.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccelpart 44773 . . . . . 6 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
4 fveq1 6755 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
5 fveq1 6755 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
64, 5oveq12d 7273 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
76eleq2d 2824 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
8 fveq1 6755 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
9 fveq1 6755 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
108, 9oveq12d 7273 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1110eleq2d 2824 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1211rexbidv 3225 . . . . . . . . 9 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
137, 12imbi12d 344 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1413rspcva 3550 . . . . . . 7 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514expcom 413 . . . . . 6 (∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
162, 3, 153syl 18 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
171, 16mpd 15 . . . 4 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
18 nnnn0 12170 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
19 0elfz 13282 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 18, 193syl 18 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑀))
212, 1, 20iccpartxr 44759 . . . . . . . . 9 (𝜑 → (𝑃‘0) ∈ ℝ*)
22 nn0fz0 13283 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
2322biimpi 215 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
242, 18, 233syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
252, 1, 24iccpartxr 44759 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2621, 25jca 511 . . . . . . . 8 (𝜑 → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
2726adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
28 elfzofz 13331 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
292, 1iccpartgel 44769 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
30 fveq2 6756 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
3130breq2d 5082 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
3231rspcva 3550 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗)) → (𝑃‘0) ≤ (𝑃𝑖))
3328, 29, 32syl2anr 596 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
34 fzofzp1 13412 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
352, 1iccpartleu 44768 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀))
36 fveq2 6756 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
3736breq1d 5080 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3837rspcva 3550 . . . . . . . 8 (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
3934, 35, 38syl2anr 596 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
40 icossico 13078 . . . . . . 7 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4127, 33, 39, 40syl12anc 833 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4241sseld 3916 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4342rexlimdva 3212 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4417, 43impbid 211 . . 3 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 eliun 4925 . . 3 (𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4644, 45bitr4di 288 . 2 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ 𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4746eqrdv 2736 1 (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883   ciun 4921   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939  cle 10941  cn 11903  0cn0 12163  [,)cico 13010  ...cfz 13168  ..^cfzo 13311  RePartciccp 44753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fz 13169  df-fzo 13312  df-iccp 44754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator