Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiun Structured version   Visualization version   GIF version

Theorem iccpartiun 44309
Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiun (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiun
Dummy variables 𝑗 𝑘 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartiun.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccelpart 44308 . . . . . 6 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
4 fveq1 6655 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
5 fveq1 6655 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
64, 5oveq12d 7166 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
76eleq2d 2838 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
8 fveq1 6655 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
9 fveq1 6655 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
108, 9oveq12d 7166 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1110eleq2d 2838 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1211rexbidv 3222 . . . . . . . . 9 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
137, 12imbi12d 349 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1413rspcva 3540 . . . . . . 7 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514expcom 418 . . . . . 6 (∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
162, 3, 153syl 18 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
171, 16mpd 15 . . . 4 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
18 nnnn0 11931 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
19 0elfz 13043 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 18, 193syl 18 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑀))
212, 1, 20iccpartxr 44294 . . . . . . . . 9 (𝜑 → (𝑃‘0) ∈ ℝ*)
22 nn0fz0 13044 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
2322biimpi 219 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
242, 18, 233syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
252, 1, 24iccpartxr 44294 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2621, 25jca 516 . . . . . . . 8 (𝜑 → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
2726adantr 485 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
28 elfzofz 13092 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
292, 1iccpartgel 44304 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
30 fveq2 6656 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
3130breq2d 5042 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
3231rspcva 3540 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗)) → (𝑃‘0) ≤ (𝑃𝑖))
3328, 29, 32syl2anr 600 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
34 fzofzp1 13173 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
352, 1iccpartleu 44303 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀))
36 fveq2 6656 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
3736breq1d 5040 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3837rspcva 3540 . . . . . . . 8 (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
3934, 35, 38syl2anr 600 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
40 icossico 12839 . . . . . . 7 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4127, 33, 39, 40syl12anc 836 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4241sseld 3892 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4342rexlimdva 3209 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4417, 43impbid 215 . . 3 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 eliun 4885 . . 3 (𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4644, 45bitr4di 293 . 2 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ 𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4746eqrdv 2757 1 (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  wrex 3072  wss 3859   ciun 4881   class class class wbr 5030  cfv 6333  (class class class)co 7148  0cc0 10565  1c1 10566   + caddc 10568  *cxr 10702  cle 10704  cn 11664  0cn0 11924  [,)cico 12771  ...cfz 12929  ..^cfzo 13072  RePartciccp 44288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7578  df-1st 7691  df-2nd 7692  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-er 8297  df-map 8416  df-en 8526  df-dom 8527  df-sdom 8528  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-nn 11665  df-2 11727  df-n0 11925  df-z 12011  df-uz 12273  df-ico 12775  df-fz 12930  df-fzo 13073  df-iccp 44289
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator