Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiun Structured version   Visualization version   GIF version

Theorem iccpartiun 47421
Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiun (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiun
Dummy variables 𝑗 𝑘 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartiun.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccelpart 47420 . . . . . 6 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
4 fveq1 6905 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
5 fveq1 6905 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
64, 5oveq12d 7449 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
76eleq2d 2827 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
8 fveq1 6905 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
9 fveq1 6905 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
108, 9oveq12d 7449 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1110eleq2d 2827 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1211rexbidv 3179 . . . . . . . . 9 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
137, 12imbi12d 344 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1413rspcva 3620 . . . . . . 7 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514expcom 413 . . . . . 6 (∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
162, 3, 153syl 18 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
171, 16mpd 15 . . . 4 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
18 nnnn0 12533 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
19 0elfz 13664 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 18, 193syl 18 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑀))
212, 1, 20iccpartxr 47406 . . . . . . . . 9 (𝜑 → (𝑃‘0) ∈ ℝ*)
22 nn0fz0 13665 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
2322biimpi 216 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
242, 18, 233syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
252, 1, 24iccpartxr 47406 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2621, 25jca 511 . . . . . . . 8 (𝜑 → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
2726adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
28 elfzofz 13715 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
292, 1iccpartgel 47416 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
30 fveq2 6906 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
3130breq2d 5155 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
3231rspcva 3620 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗)) → (𝑃‘0) ≤ (𝑃𝑖))
3328, 29, 32syl2anr 597 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
34 fzofzp1 13803 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
352, 1iccpartleu 47415 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀))
36 fveq2 6906 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
3736breq1d 5153 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3837rspcva 3620 . . . . . . . 8 (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
3934, 35, 38syl2anr 597 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
40 icossico 13457 . . . . . . 7 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4127, 33, 39, 40syl12anc 837 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4241sseld 3982 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4342rexlimdva 3155 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4417, 43impbid 212 . . 3 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 eliun 4995 . . 3 (𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4644, 45bitr4di 289 . 2 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ 𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4746eqrdv 2735 1 (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  wss 3951   ciun 4991   class class class wbr 5143  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156   + caddc 11158  *cxr 11294  cle 11296  cn 12266  0cn0 12526  [,)cico 13389  ...cfz 13547  ..^cfzo 13694  RePartciccp 47400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-z 12614  df-uz 12879  df-ico 13393  df-fz 13548  df-fzo 13695  df-iccp 47401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator