Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartiun Structured version   Visualization version   GIF version

Theorem iccpartiun 47358
Description: A half-open interval of extended reals is the union of the parts of its partition. (Contributed by AV, 18-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartiun (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartiun
Dummy variables 𝑗 𝑘 𝑝 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccpartiun.p . . . . 5 (𝜑𝑃 ∈ (RePart‘𝑀))
2 iccpartiun.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 iccelpart 47357 . . . . . 6 (𝑀 ∈ ℕ → ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))))
4 fveq1 6905 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0))
5 fveq1 6905 . . . . . . . . . . 11 (𝑝 = 𝑃 → (𝑝𝑀) = (𝑃𝑀))
64, 5oveq12d 7448 . . . . . . . . . 10 (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝𝑀)) = ((𝑃‘0)[,)(𝑃𝑀)))
76eleq2d 2824 . . . . . . . . 9 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
8 fveq1 6905 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝𝑖) = (𝑃𝑖))
9 fveq1 6905 . . . . . . . . . . . 12 (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1)))
108, 9oveq12d 7448 . . . . . . . . . . 11 (𝑝 = 𝑃 → ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
1110eleq2d 2824 . . . . . . . . . 10 (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1211rexbidv 3176 . . . . . . . . 9 (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
137, 12imbi12d 344 . . . . . . . 8 (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
1413rspcva 3619 . . . . . . 7 ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
1514expcom 413 . . . . . 6 (∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
162, 3, 153syl 18 . . . . 5 (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
171, 16mpd 15 . . . 4 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
18 nnnn0 12530 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
19 0elfz 13660 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 18, 193syl 18 . . . . . . . . . 10 (𝜑 → 0 ∈ (0...𝑀))
212, 1, 20iccpartxr 47343 . . . . . . . . 9 (𝜑 → (𝑃‘0) ∈ ℝ*)
22 nn0fz0 13661 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
2322biimpi 216 . . . . . . . . . . 11 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
242, 18, 233syl 18 . . . . . . . . . 10 (𝜑𝑀 ∈ (0...𝑀))
252, 1, 24iccpartxr 47343 . . . . . . . . 9 (𝜑 → (𝑃𝑀) ∈ ℝ*)
2621, 25jca 511 . . . . . . . 8 (𝜑 → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
2726adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*))
28 elfzofz 13711 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
292, 1iccpartgel 47353 . . . . . . . 8 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
30 fveq2 6906 . . . . . . . . . 10 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
3130breq2d 5159 . . . . . . . . 9 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
3231rspcva 3619 . . . . . . . 8 ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗)) → (𝑃‘0) ≤ (𝑃𝑖))
3328, 29, 32syl2anr 597 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
34 fzofzp1 13799 . . . . . . . 8 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
352, 1iccpartleu 47352 . . . . . . . 8 (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀))
36 fveq2 6906 . . . . . . . . . 10 (𝑘 = (𝑖 + 1) → (𝑃𝑘) = (𝑃‘(𝑖 + 1)))
3736breq1d 5157 . . . . . . . . 9 (𝑘 = (𝑖 + 1) → ((𝑃𝑘) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3837rspcva 3619 . . . . . . . 8 (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃𝑘) ≤ (𝑃𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
3934, 35, 38syl2anr 597 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
40 icossico 13453 . . . . . . 7 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4127, 33, 39, 40syl12anc 837 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4241sseld 3993 . . . . 5 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4342rexlimdva 3152 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
4417, 43impbid 212 . . 3 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 eliun 4999 . . 3 (𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4644, 45bitr4di 289 . 2 (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃𝑀)) ↔ 𝑥 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4746eqrdv 2732 1 (𝜑 → ((𝑃‘0)[,)(𝑃𝑀)) = 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wral 3058  wrex 3067  wss 3962   ciun 4995   class class class wbr 5147  cfv 6562  (class class class)co 7430  0cc0 11152  1c1 11153   + caddc 11155  *cxr 11291  cle 11293  cn 12263  0cn0 12523  [,)cico 13385  ...cfz 13543  ..^cfzo 13690  RePartciccp 47337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-map 8866  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-n0 12524  df-z 12611  df-uz 12876  df-ico 13389  df-fz 13544  df-fzo 13691  df-iccp 47338
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator