Step | Hyp | Ref
| Expression |
1 | | iccpartiun.p |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
2 | | iccpartiun.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | iccelpart 44773 |
. . . . . 6
⊢ (𝑀 ∈ ℕ →
∀𝑝 ∈
(RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) |
4 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → (𝑝‘0) = (𝑃‘0)) |
5 | | fveq1 6755 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → (𝑝‘𝑀) = (𝑃‘𝑀)) |
6 | 4, 5 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → ((𝑝‘0)[,)(𝑝‘𝑀)) = ((𝑃‘0)[,)(𝑃‘𝑀))) |
7 | 6 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) ↔ 𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)))) |
8 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → (𝑝‘𝑖) = (𝑃‘𝑖)) |
9 | | fveq1 6755 |
. . . . . . . . . . . 12
⊢ (𝑝 = 𝑃 → (𝑝‘(𝑖 + 1)) = (𝑃‘(𝑖 + 1))) |
10 | 8, 9 | oveq12d 7273 |
. . . . . . . . . . 11
⊢ (𝑝 = 𝑃 → ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) = ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |
11 | 10 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (𝑝 = 𝑃 → (𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ 𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
12 | 11 | rexbidv 3225 |
. . . . . . . . 9
⊢ (𝑝 = 𝑃 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
13 | 7, 12 | imbi12d 344 |
. . . . . . . 8
⊢ (𝑝 = 𝑃 → ((𝑥 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) ↔ (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))))) |
14 | 13 | rspcva 3550 |
. . . . . . 7
⊢ ((𝑃 ∈ (RePart‘𝑀) ∧ ∀𝑝 ∈ (RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1))))) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
15 | 14 | expcom 413 |
. . . . . 6
⊢
(∀𝑝 ∈
(RePart‘𝑀)(𝑥 ∈ ((𝑝‘0)[,)(𝑝‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑝‘𝑖)[,)(𝑝‘(𝑖 + 1)))) → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))))) |
16 | 2, 3, 15 | 3syl 18 |
. . . . 5
⊢ (𝜑 → (𝑃 ∈ (RePart‘𝑀) → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))))) |
17 | 1, 16 | mpd 15 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) → ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
18 | | nnnn0 12170 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ → 𝑀 ∈
ℕ0) |
19 | | 0elfz 13282 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ0
→ 0 ∈ (0...𝑀)) |
20 | 2, 18, 19 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
21 | 2, 1, 20 | iccpartxr 44759 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃‘0) ∈
ℝ*) |
22 | | nn0fz0 13283 |
. . . . . . . . . . . 12
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈ (0...𝑀)) |
23 | 22 | biimpi 215 |
. . . . . . . . . . 11
⊢ (𝑀 ∈ ℕ0
→ 𝑀 ∈ (0...𝑀)) |
24 | 2, 18, 23 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ (0...𝑀)) |
25 | 2, 1, 24 | iccpartxr 44759 |
. . . . . . . . 9
⊢ (𝜑 → (𝑃‘𝑀) ∈
ℝ*) |
26 | 21, 25 | jca 511 |
. . . . . . . 8
⊢ (𝜑 → ((𝑃‘0) ∈ ℝ* ∧
(𝑃‘𝑀) ∈
ℝ*)) |
27 | 26 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑃‘0) ∈ ℝ* ∧
(𝑃‘𝑀) ∈
ℝ*)) |
28 | | elfzofz 13331 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
29 | 2, 1 | iccpartgel 44769 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑗)) |
30 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑖 → (𝑃‘𝑗) = (𝑃‘𝑖)) |
31 | 30 | breq2d 5082 |
. . . . . . . . 9
⊢ (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃‘𝑗) ↔ (𝑃‘0) ≤ (𝑃‘𝑖))) |
32 | 31 | rspcva 3550 |
. . . . . . . 8
⊢ ((𝑖 ∈ (0...𝑀) ∧ ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑗)) → (𝑃‘0) ≤ (𝑃‘𝑖)) |
33 | 28, 29, 32 | syl2anr 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃‘𝑖)) |
34 | | fzofzp1 13412 |
. . . . . . . 8
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
35 | 2, 1 | iccpartleu 44768 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑀)(𝑃‘𝑘) ≤ (𝑃‘𝑀)) |
36 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑘 = (𝑖 + 1) → (𝑃‘𝑘) = (𝑃‘(𝑖 + 1))) |
37 | 36 | breq1d 5080 |
. . . . . . . . 9
⊢ (𝑘 = (𝑖 + 1) → ((𝑃‘𝑘) ≤ (𝑃‘𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑀))) |
38 | 37 | rspcva 3550 |
. . . . . . . 8
⊢ (((𝑖 + 1) ∈ (0...𝑀) ∧ ∀𝑘 ∈ (0...𝑀)(𝑃‘𝑘) ≤ (𝑃‘𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑀)) |
39 | 34, 35, 38 | syl2anr 596 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑀)) |
40 | | icossico 13078 |
. . . . . . 7
⊢ ((((𝑃‘0) ∈
ℝ* ∧ (𝑃‘𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃‘𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃‘𝑀))) → ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃‘𝑀))) |
41 | 27, 33, 39, 40 | syl12anc 833 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃‘𝑀))) |
42 | 41 | sseld 3916 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)))) |
43 | 42 | rexlimdva 3212 |
. . . 4
⊢ (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)))) |
44 | 17, 43 | impbid 211 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
45 | | eliun 4925 |
. . 3
⊢ (𝑥 ∈ ∪ 𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∃𝑖 ∈ (0..^𝑀)𝑥 ∈ ((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |
46 | 44, 45 | bitr4di 288 |
. 2
⊢ (𝜑 → (𝑥 ∈ ((𝑃‘0)[,)(𝑃‘𝑀)) ↔ 𝑥 ∈ ∪
𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1))))) |
47 | 46 | eqrdv 2736 |
1
⊢ (𝜑 → ((𝑃‘0)[,)(𝑃‘𝑀)) = ∪
𝑖 ∈ (0..^𝑀)((𝑃‘𝑖)[,)(𝑃‘(𝑖 + 1)))) |