Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgel Structured version   Visualization version   GIF version

Theorem iccpartgel 47434
Description: If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgel (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgel
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
21nnnn0d 12510 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3 elnn0uz 12845 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 218 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
5 fzpred 13540 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
64, 5syl 17 . . . . 5 (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
76eleq2d 2815 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀))))
8 elun 4119 . . . . 5 (𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)))
98a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀))))
10 velsn 4608 . . . . . 6 (𝑖 ∈ {0} ↔ 𝑖 = 0)
1110a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {0} ↔ 𝑖 = 0))
12 0p1e1 12310 . . . . . . . 8 (0 + 1) = 1
1312a1i 11 . . . . . . 7 (𝜑 → (0 + 1) = 1)
1413oveq1d 7405 . . . . . 6 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
1514eleq2d 2815 . . . . 5 (𝜑 → (𝑖 ∈ ((0 + 1)...𝑀) ↔ 𝑖 ∈ (1...𝑀)))
1611, 15orbi12d 918 . . . 4 (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))))
177, 9, 163bitrd 305 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))))
18 iccpartgtprec.p . . . . . . . 8 (𝜑𝑃 ∈ (RePart‘𝑀))
19 0elfz 13592 . . . . . . . . 9 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 19syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
211, 18, 20iccpartxr 47424 . . . . . . 7 (𝜑 → (𝑃‘0) ∈ ℝ*)
2221xrleidd 13119 . . . . . 6 (𝜑 → (𝑃‘0) ≤ (𝑃‘0))
23 fveq2 6861 . . . . . . 7 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
2423breq2d 5122 . . . . . 6 (𝑖 = 0 → ((𝑃‘0) ≤ (𝑃𝑖) ↔ (𝑃‘0) ≤ (𝑃‘0)))
2522, 24imbitrrid 246 . . . . 5 (𝑖 = 0 → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
2621adantr 480 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) ∈ ℝ*)
271adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
2818adantr 480 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑃 ∈ (RePart‘𝑀))
29 1nn0 12465 . . . . . . . . . . . 12 1 ∈ ℕ0
3029a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
31 elnn0uz 12845 . . . . . . . . . . 11 (1 ∈ ℕ0 ↔ 1 ∈ (ℤ‘0))
3230, 31sylib 218 . . . . . . . . . 10 (𝜑 → 1 ∈ (ℤ‘0))
33 fzss1 13531 . . . . . . . . . 10 (1 ∈ (ℤ‘0) → (1...𝑀) ⊆ (0...𝑀))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → (1...𝑀) ⊆ (0...𝑀))
3534sselda 3949 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
3627, 28, 35iccpartxr 47424 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) ∈ ℝ*)
371, 18iccpartgtl 47431 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑘))
38 fveq2 6861 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
3938breq2d 5122 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
4039rspccv 3588 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
4137, 40syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
4241imp 406 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) < (𝑃𝑖))
4326, 36, 42xrltled 13117 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
4443expcom 413 . . . . 5 (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
4525, 44jaoi 857 . . . 4 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
4645com12 32 . . 3 (𝜑 → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃𝑖)))
4717, 46sylbid 240 . 2 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
4847ralrimiv 3125 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3045  cun 3915  wss 3917  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cn 12193  0cn0 12449  cuz 12800  ...cfz 13475  RePartciccp 47418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-iccp 47419
This theorem is referenced by:  iccpartrn  47435  iccpartiun  47439  iccpartdisj  47442
  Copyright terms: Public domain W3C validator