Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgel Structured version   Visualization version   GIF version

Theorem iccpartgel 44881
Description: If there is a partition, then all intermediate points and the upper and the lower bound are greater than or equal to the lower bound. (Contributed by AV, 14-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartgel (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑖))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartgel
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 iccpartgtprec.m . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
21nnnn0d 12293 . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
3 elnn0uz 12623 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ (ℤ‘0))
42, 3sylib 217 . . . . . 6 (𝜑𝑀 ∈ (ℤ‘0))
5 fzpred 13304 . . . . . 6 (𝑀 ∈ (ℤ‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
64, 5syl 17 . . . . 5 (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀)))
76eleq2d 2824 . . . 4 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀))))
8 elun 4083 . . . . 5 (𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)))
98a1i 11 . . . 4 (𝜑 → (𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀))))
10 velsn 4577 . . . . . 6 (𝑖 ∈ {0} ↔ 𝑖 = 0)
1110a1i 11 . . . . 5 (𝜑 → (𝑖 ∈ {0} ↔ 𝑖 = 0))
12 0p1e1 12095 . . . . . . . 8 (0 + 1) = 1
1312a1i 11 . . . . . . 7 (𝜑 → (0 + 1) = 1)
1413oveq1d 7290 . . . . . 6 (𝜑 → ((0 + 1)...𝑀) = (1...𝑀))
1514eleq2d 2824 . . . . 5 (𝜑 → (𝑖 ∈ ((0 + 1)...𝑀) ↔ 𝑖 ∈ (1...𝑀)))
1611, 15orbi12d 916 . . . 4 (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))))
177, 9, 163bitrd 305 . . 3 (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀))))
18 iccpartgtprec.p . . . . . . . 8 (𝜑𝑃 ∈ (RePart‘𝑀))
19 0elfz 13353 . . . . . . . . 9 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
202, 19syl 17 . . . . . . . 8 (𝜑 → 0 ∈ (0...𝑀))
211, 18, 20iccpartxr 44871 . . . . . . 7 (𝜑 → (𝑃‘0) ∈ ℝ*)
2221xrleidd 12886 . . . . . 6 (𝜑 → (𝑃‘0) ≤ (𝑃‘0))
23 fveq2 6774 . . . . . . 7 (𝑖 = 0 → (𝑃𝑖) = (𝑃‘0))
2423breq2d 5086 . . . . . 6 (𝑖 = 0 → ((𝑃‘0) ≤ (𝑃𝑖) ↔ (𝑃‘0) ≤ (𝑃‘0)))
2522, 24syl5ibr 245 . . . . 5 (𝑖 = 0 → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
2621adantr 481 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) ∈ ℝ*)
271adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑀 ∈ ℕ)
2818adantr 481 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑃 ∈ (RePart‘𝑀))
29 1nn0 12249 . . . . . . . . . . . 12 1 ∈ ℕ0
3029a1i 11 . . . . . . . . . . 11 (𝜑 → 1 ∈ ℕ0)
31 elnn0uz 12623 . . . . . . . . . . 11 (1 ∈ ℕ0 ↔ 1 ∈ (ℤ‘0))
3230, 31sylib 217 . . . . . . . . . 10 (𝜑 → 1 ∈ (ℤ‘0))
33 fzss1 13295 . . . . . . . . . 10 (1 ∈ (ℤ‘0) → (1...𝑀) ⊆ (0...𝑀))
3432, 33syl 17 . . . . . . . . 9 (𝜑 → (1...𝑀) ⊆ (0...𝑀))
3534sselda 3921 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀))
3627, 28, 35iccpartxr 44871 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃𝑖) ∈ ℝ*)
371, 18iccpartgtl 44878 . . . . . . . . 9 (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑘))
38 fveq2 6774 . . . . . . . . . . 11 (𝑘 = 𝑖 → (𝑃𝑘) = (𝑃𝑖))
3938breq2d 5086 . . . . . . . . . 10 (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃𝑘) ↔ (𝑃‘0) < (𝑃𝑖)))
4039rspccv 3558 . . . . . . . . 9 (∀𝑘 ∈ (1...𝑀)(𝑃‘0) < (𝑃𝑘) → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
4137, 40syl 17 . . . . . . . 8 (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃𝑖)))
4241imp 407 . . . . . . 7 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) < (𝑃𝑖))
4326, 36, 42xrltled 12884 . . . . . 6 ((𝜑𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
4443expcom 414 . . . . 5 (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
4525, 44jaoi 854 . . . 4 ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑃‘0) ≤ (𝑃𝑖)))
4645com12 32 . . 3 (𝜑 → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃𝑖)))
4717, 46sylbid 239 . 2 (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
4847ralrimiv 3102 1 (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑖))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wral 3064  cun 3885  wss 3887  {csn 4561   class class class wbr 5074  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872   + caddc 10874  *cxr 11008   < clt 11009  cle 11010  cn 11973  0cn0 12233  cuz 12582  ...cfz 13239  RePartciccp 44865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-iccp 44866
This theorem is referenced by:  iccpartrn  44882  iccpartiun  44886  iccpartdisj  44889
  Copyright terms: Public domain W3C validator