Step | Hyp | Ref
| Expression |
1 | | iccpartgtprec.m |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
2 | 1 | nnnn0d 12293 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
3 | | elnn0uz 12623 |
. . . . . . 7
⊢ (𝑀 ∈ ℕ0
↔ 𝑀 ∈
(ℤ≥‘0)) |
4 | 2, 3 | sylib 217 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
5 | | fzpred 13304 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘0) → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
6 | 4, 5 | syl 17 |
. . . . 5
⊢ (𝜑 → (0...𝑀) = ({0} ∪ ((0 + 1)...𝑀))) |
7 | 6 | eleq2d 2824 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ 𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)))) |
8 | | elun 4083 |
. . . . 5
⊢ (𝑖 ∈ ({0} ∪ ((0 +
1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀))) |
9 | 8 | a1i 11 |
. . . 4
⊢ (𝜑 → (𝑖 ∈ ({0} ∪ ((0 + 1)...𝑀)) ↔ (𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)))) |
10 | | velsn 4577 |
. . . . . 6
⊢ (𝑖 ∈ {0} ↔ 𝑖 = 0) |
11 | 10 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ {0} ↔ 𝑖 = 0)) |
12 | | 0p1e1 12095 |
. . . . . . . 8
⊢ (0 + 1) =
1 |
13 | 12 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (0 + 1) =
1) |
14 | 13 | oveq1d 7290 |
. . . . . 6
⊢ (𝜑 → ((0 + 1)...𝑀) = (1...𝑀)) |
15 | 14 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑖 ∈ ((0 + 1)...𝑀) ↔ 𝑖 ∈ (1...𝑀))) |
16 | 11, 15 | orbi12d 916 |
. . . 4
⊢ (𝜑 → ((𝑖 ∈ {0} ∨ 𝑖 ∈ ((0 + 1)...𝑀)) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))) |
17 | 7, 9, 16 | 3bitrd 305 |
. . 3
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) ↔ (𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)))) |
18 | | iccpartgtprec.p |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
19 | | 0elfz 13353 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℕ0
→ 0 ∈ (0...𝑀)) |
20 | 2, 19 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ (0...𝑀)) |
21 | 1, 18, 20 | iccpartxr 44871 |
. . . . . . 7
⊢ (𝜑 → (𝑃‘0) ∈
ℝ*) |
22 | 21 | xrleidd 12886 |
. . . . . 6
⊢ (𝜑 → (𝑃‘0) ≤ (𝑃‘0)) |
23 | | fveq2 6774 |
. . . . . . 7
⊢ (𝑖 = 0 → (𝑃‘𝑖) = (𝑃‘0)) |
24 | 23 | breq2d 5086 |
. . . . . 6
⊢ (𝑖 = 0 → ((𝑃‘0) ≤ (𝑃‘𝑖) ↔ (𝑃‘0) ≤ (𝑃‘0))) |
25 | 22, 24 | syl5ibr 245 |
. . . . 5
⊢ (𝑖 = 0 → (𝜑 → (𝑃‘0) ≤ (𝑃‘𝑖))) |
26 | 21 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) ∈
ℝ*) |
27 | 1 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑀 ∈ ℕ) |
28 | 18 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑃 ∈ (RePart‘𝑀)) |
29 | | 1nn0 12249 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℕ0 |
30 | 29 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → 1 ∈
ℕ0) |
31 | | elnn0uz 12623 |
. . . . . . . . . . 11
⊢ (1 ∈
ℕ0 ↔ 1 ∈
(ℤ≥‘0)) |
32 | 30, 31 | sylib 217 |
. . . . . . . . . 10
⊢ (𝜑 → 1 ∈
(ℤ≥‘0)) |
33 | | fzss1 13295 |
. . . . . . . . . 10
⊢ (1 ∈
(ℤ≥‘0) → (1...𝑀) ⊆ (0...𝑀)) |
34 | 32, 33 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (1...𝑀) ⊆ (0...𝑀)) |
35 | 34 | sselda 3921 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → 𝑖 ∈ (0...𝑀)) |
36 | 27, 28, 35 | iccpartxr 44871 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑃‘𝑖) ∈
ℝ*) |
37 | 1, 18 | iccpartgtl 44878 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ (1...𝑀)(𝑃‘0) < (𝑃‘𝑘)) |
38 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑖 → (𝑃‘𝑘) = (𝑃‘𝑖)) |
39 | 38 | breq2d 5086 |
. . . . . . . . . 10
⊢ (𝑘 = 𝑖 → ((𝑃‘0) < (𝑃‘𝑘) ↔ (𝑃‘0) < (𝑃‘𝑖))) |
40 | 39 | rspccv 3558 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
(1...𝑀)(𝑃‘0) < (𝑃‘𝑘) → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
41 | 37, 40 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (𝑖 ∈ (1...𝑀) → (𝑃‘0) < (𝑃‘𝑖))) |
42 | 41 | imp 407 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) < (𝑃‘𝑖)) |
43 | 26, 36, 42 | xrltled 12884 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃‘𝑖)) |
44 | 43 | expcom 414 |
. . . . 5
⊢ (𝑖 ∈ (1...𝑀) → (𝜑 → (𝑃‘0) ≤ (𝑃‘𝑖))) |
45 | 25, 44 | jaoi 854 |
. . . 4
⊢ ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝜑 → (𝑃‘0) ≤ (𝑃‘𝑖))) |
46 | 45 | com12 32 |
. . 3
⊢ (𝜑 → ((𝑖 = 0 ∨ 𝑖 ∈ (1...𝑀)) → (𝑃‘0) ≤ (𝑃‘𝑖))) |
47 | 17, 46 | sylbid 239 |
. 2
⊢ (𝜑 → (𝑖 ∈ (0...𝑀) → (𝑃‘0) ≤ (𝑃‘𝑖))) |
48 | 47 | ralrimiv 3102 |
1
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃‘𝑖)) |