| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodge1 | Structured version Visualization version GIF version | ||
| Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge1.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodge1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge1.ge | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge1 | ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1xr 11166 | . 2 ⊢ 1 ∈ ℝ* | |
| 2 | pnfxr 11161 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge1.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | 1re 11107 | . . . . . 6 ⊢ 1 ∈ ℝ | |
| 5 | icossre 13323 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ) | |
| 6 | 4, 2, 5 | mp2an 692 | . . . . 5 ⊢ (1[,)+∞) ⊆ ℝ |
| 7 | ax-resscn 11058 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 8 | 6, 7 | sstri 3939 | . . . 4 ⊢ (1[,)+∞) ⊆ ℂ |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (1[,)+∞) ⊆ ℂ) |
| 10 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*) |
| 11 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*) |
| 12 | 6 | sseli 3925 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
| 13 | 12 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
| 14 | 6 | sseli 3925 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ) |
| 15 | 14 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ) |
| 16 | 13, 15 | remulcld 11137 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ) |
| 17 | 16 | rexrd 11157 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*) |
| 18 | 1t1e1 12277 | . . . . . 6 ⊢ (1 · 1) = 1 | |
| 19 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ) |
| 20 | 0le1 11635 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
| 21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1) |
| 22 | icogelb 13291 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥) | |
| 23 | 1, 2, 22 | mp3an12 1453 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥) |
| 24 | 23 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥) |
| 25 | icogelb 13291 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) | |
| 26 | 1, 2, 25 | mp3an12 1453 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦) |
| 27 | 26 | adantl 481 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) |
| 28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 12059 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
| 29 | 18, 28 | eqbrtrrid 5122 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦)) |
| 30 | 16 | ltpnfd 13015 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞) |
| 31 | 10, 11, 17, 29, 30 | elicod 13290 | . . . 4 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 32 | 31 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
| 33 | fprodge1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 34 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ*) |
| 35 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈ ℝ*) |
| 36 | fprodge1.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 37 | 36 | rexrd 11157 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 38 | fprodge1.ge | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) | |
| 39 | 36 | ltpnfd 13015 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
| 40 | 34, 35, 37, 38, 39 | elicod 13290 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
| 41 | 1le1 11740 | . . . . 5 ⊢ 1 ≤ 1 | |
| 42 | ltpnf 13014 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 43 | 4, 42 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 44 | elico2 13305 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))) | |
| 45 | 4, 2, 44 | mp2an 692 | . . . . 5 ⊢ (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)) |
| 46 | 4, 41, 43, 45 | mpbir3an 1342 | . . . 4 ⊢ 1 ∈ (1[,)+∞) |
| 47 | 46 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (1[,)+∞)) |
| 48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 15860 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
| 49 | icogelb 13291 | . 2 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 50 | 1, 2, 48, 49 | mp3an12i 1467 | 1 ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1784 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5086 (class class class)co 7341 Fincfn 8864 ℂcc 10999 ℝcr 11000 0cc0 11001 1c1 11002 · cmul 11006 +∞cpnf 11138 ℝ*cxr 11140 < clt 11141 ≤ cle 11142 [,)cico 13242 ∏cprod 15805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-inf2 9526 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-ico 13246 df-fz 13403 df-fzo 13550 df-seq 13904 df-exp 13964 df-hash 14233 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-clim 15390 df-prod 15806 |
| This theorem is referenced by: fprodle 15898 |
| Copyright terms: Public domain | W3C validator |