Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodge1 | Structured version Visualization version GIF version |
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodge1.ph | ⊢ Ⅎ𝑘𝜑 |
fprodge1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodge1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fprodge1.ge | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
Ref | Expression |
---|---|
fprodge1 | ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 10892 | . 2 ⊢ 1 ∈ ℝ* | |
2 | pnfxr 10887 | . 2 ⊢ +∞ ∈ ℝ* | |
3 | fprodge1.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
4 | 1re 10833 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | icossre 13016 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ) | |
6 | 4, 2, 5 | mp2an 692 | . . . . 5 ⊢ (1[,)+∞) ⊆ ℝ |
7 | ax-resscn 10786 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 3910 | . . . 4 ⊢ (1[,)+∞) ⊆ ℂ |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (1[,)+∞) ⊆ ℂ) |
10 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*) |
11 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*) |
12 | 6 | sseli 3896 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
13 | 12 | adantr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
14 | 6 | sseli 3896 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ) |
15 | 14 | adantl 485 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ) |
16 | 13, 15 | remulcld 10863 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ) |
17 | 16 | rexrd 10883 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*) |
18 | 1t1e1 11992 | . . . . . 6 ⊢ (1 · 1) = 1 | |
19 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ) |
20 | 0le1 11355 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1) |
22 | icogelb 12986 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥) | |
23 | 1, 2, 22 | mp3an12 1453 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥) |
24 | 23 | adantr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥) |
25 | icogelb 12986 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) | |
26 | 1, 2, 25 | mp3an12 1453 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦) |
27 | 26 | adantl 485 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) |
28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 11774 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
29 | 18, 28 | eqbrtrrid 5089 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦)) |
30 | 16 | ltpnfd 12713 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞) |
31 | 10, 11, 17, 29, 30 | elicod 12985 | . . . 4 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
32 | 31 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
33 | fprodge1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
34 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ*) |
35 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈ ℝ*) |
36 | fprodge1.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
37 | 36 | rexrd 10883 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
38 | fprodge1.ge | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) | |
39 | 36 | ltpnfd 12713 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
40 | 34, 35, 37, 38, 39 | elicod 12985 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
41 | 1le1 11460 | . . . . 5 ⊢ 1 ≤ 1 | |
42 | ltpnf 12712 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
43 | 4, 42 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
44 | elico2 12999 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))) | |
45 | 4, 2, 44 | mp2an 692 | . . . . 5 ⊢ (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)) |
46 | 4, 41, 43, 45 | mpbir3an 1343 | . . . 4 ⊢ 1 ∈ (1[,)+∞) |
47 | 46 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (1[,)+∞)) |
48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 15520 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
49 | icogelb 12986 | . 2 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
50 | 1, 2, 48, 49 | mp3an12i 1467 | 1 ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 Ⅎwnf 1791 ∈ wcel 2110 ⊆ wss 3866 class class class wbr 5053 (class class class)co 7213 Fincfn 8626 ℂcc 10727 ℝcr 10728 0cc0 10729 1c1 10730 · cmul 10734 +∞cpnf 10864 ℝ*cxr 10866 < clt 10867 ≤ cle 10868 [,)cico 12937 ∏cprod 15467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-inf2 9256 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-se 5510 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-isom 6389 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-sup 9058 df-oi 9126 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-ico 12941 df-fz 13096 df-fzo 13239 df-seq 13575 df-exp 13636 df-hash 13897 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-clim 15049 df-prod 15468 |
This theorem is referenced by: fprodle 15558 |
Copyright terms: Public domain | W3C validator |