MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge1 Structured version   Visualization version   GIF version

Theorem fprodge1 15897
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph 𝑘𝜑
fprodge1.a (𝜑𝐴 ∈ Fin)
fprodge1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge1.ge ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
Assertion
Ref Expression
fprodge1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 11166 . 2 1 ∈ ℝ*
2 pnfxr 11161 . 2 +∞ ∈ ℝ*
3 fprodge1.ph . . 3 𝑘𝜑
4 1re 11107 . . . . . 6 1 ∈ ℝ
5 icossre 13323 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ)
64, 2, 5mp2an 692 . . . . 5 (1[,)+∞) ⊆ ℝ
7 ax-resscn 11058 . . . . 5 ℝ ⊆ ℂ
86, 7sstri 3939 . . . 4 (1[,)+∞) ⊆ ℂ
98a1i 11 . . 3 (𝜑 → (1[,)+∞) ⊆ ℂ)
101a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*)
112a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*)
126sseli 3925 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
146sseli 3925 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
1514adantl 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
1613, 15remulcld 11137 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ)
1716rexrd 11157 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*)
18 1t1e1 12277 . . . . . 6 (1 · 1) = 1
194a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ)
20 0le1 11635 . . . . . . . 8 0 ≤ 1
2120a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1)
22 icogelb 13291 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
231, 2, 22mp3an12 1453 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
2423adantr 480 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
25 icogelb 13291 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
261, 2, 25mp3an12 1453 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2726adantl 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 12059 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦))
2918, 28eqbrtrrid 5122 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦))
3016ltpnfd 13015 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞)
3110, 11, 17, 29, 30elicod 13290 . . . 4 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞))
3231adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞))
33 fprodge1.a . . 3 (𝜑𝐴 ∈ Fin)
341a1i 11 . . . 4 ((𝜑𝑘𝐴) → 1 ∈ ℝ*)
352a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
36 fprodge1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3736rexrd 11157 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
38 fprodge1.ge . . . 4 ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
3936ltpnfd 13015 . . . 4 ((𝜑𝑘𝐴) → 𝐵 < +∞)
4034, 35, 37, 38, 39elicod 13290 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (1[,)+∞))
41 1le1 11740 . . . . 5 1 ≤ 1
42 ltpnf 13014 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
434, 42ax-mp 5 . . . . 5 1 < +∞
44 elico2 13305 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)))
454, 2, 44mp2an 692 . . . . 5 (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))
464, 41, 43, 45mpbir3an 1342 . . . 4 1 ∈ (1[,)+∞)
4746a1i 11 . . 3 (𝜑 → 1 ∈ (1[,)+∞))
483, 9, 32, 33, 40, 47fprodcllemf 15860 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (1[,)+∞))
49 icogelb 13291 . 2 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘𝐴 𝐵)
501, 2, 48, 49mp3an12i 1467 1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wnf 1784  wcel 2111  wss 3897   class class class wbr 5086  (class class class)co 7341  Fincfn 8864  cc 10999  cr 11000  0cc0 11001  1c1 11002   · cmul 11006  +∞cpnf 11138  *cxr 11140   < clt 11141  cle 11142  [,)cico 13242  cprod 15805
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-oi 9391  df-card 9827  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-nn 12121  df-2 12183  df-3 12184  df-n0 12377  df-z 12464  df-uz 12728  df-rp 12886  df-ico 13246  df-fz 13403  df-fzo 13550  df-seq 13904  df-exp 13964  df-hash 14233  df-cj 15001  df-re 15002  df-im 15003  df-sqrt 15137  df-abs 15138  df-clim 15390  df-prod 15806
This theorem is referenced by:  fprodle  15898
  Copyright terms: Public domain W3C validator