Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodge1 | Structured version Visualization version GIF version |
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodge1.ph | ⊢ Ⅎ𝑘𝜑 |
fprodge1.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodge1.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
fprodge1.ge | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) |
Ref | Expression |
---|---|
fprodge1 | ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1xr 11034 | . 2 ⊢ 1 ∈ ℝ* | |
2 | pnfxr 11029 | . 2 ⊢ +∞ ∈ ℝ* | |
3 | fprodge1.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
4 | 1re 10975 | . . . . . 6 ⊢ 1 ∈ ℝ | |
5 | icossre 13160 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ) | |
6 | 4, 2, 5 | mp2an 689 | . . . . 5 ⊢ (1[,)+∞) ⊆ ℝ |
7 | ax-resscn 10928 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
8 | 6, 7 | sstri 3930 | . . . 4 ⊢ (1[,)+∞) ⊆ ℂ |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → (1[,)+∞) ⊆ ℂ) |
10 | 1 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*) |
11 | 2 | a1i 11 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*) |
12 | 6 | sseli 3917 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ) |
13 | 12 | adantr 481 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ) |
14 | 6 | sseli 3917 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ) |
15 | 14 | adantl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ) |
16 | 13, 15 | remulcld 11005 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ) |
17 | 16 | rexrd 11025 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*) |
18 | 1t1e1 12135 | . . . . . 6 ⊢ (1 · 1) = 1 | |
19 | 4 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ) |
20 | 0le1 11498 | . . . . . . . 8 ⊢ 0 ≤ 1 | |
21 | 20 | a1i 11 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1) |
22 | icogelb 13130 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥) | |
23 | 1, 2, 22 | mp3an12 1450 | . . . . . . . 8 ⊢ (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥) |
24 | 23 | adantr 481 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥) |
25 | icogelb 13130 | . . . . . . . . 9 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) | |
26 | 1, 2, 25 | mp3an12 1450 | . . . . . . . 8 ⊢ (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦) |
27 | 26 | adantl 482 | . . . . . . 7 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦) |
28 | 19, 13, 19, 15, 21, 21, 24, 27 | lemul12ad 11917 | . . . . . 6 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦)) |
29 | 18, 28 | eqbrtrrid 5110 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦)) |
30 | 16 | ltpnfd 12857 | . . . . 5 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞) |
31 | 10, 11, 17, 29, 30 | elicod 13129 | . . . 4 ⊢ ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
32 | 31 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞)) |
33 | fprodge1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
34 | 1 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ∈ ℝ*) |
35 | 2 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → +∞ ∈ ℝ*) |
36 | fprodge1.b | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
37 | 36 | rexrd 11025 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
38 | fprodge1.ge | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 1 ≤ 𝐵) | |
39 | 36 | ltpnfd 12857 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 < +∞) |
40 | 34, 35, 37, 38, 39 | elicod 13129 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (1[,)+∞)) |
41 | 1le1 11603 | . . . . 5 ⊢ 1 ≤ 1 | |
42 | ltpnf 12856 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
43 | 4, 42 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
44 | elico2 13143 | . . . . . 6 ⊢ ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))) | |
45 | 4, 2, 44 | mp2an 689 | . . . . 5 ⊢ (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)) |
46 | 4, 41, 43, 45 | mpbir3an 1340 | . . . 4 ⊢ 1 ∈ (1[,)+∞) |
47 | 46 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (1[,)+∞)) |
48 | 3, 9, 32, 33, 40, 47 | fprodcllemf 15668 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) |
49 | icogelb 13130 | . 2 ⊢ ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
50 | 1, 2, 48, 49 | mp3an12i 1464 | 1 ⊢ (𝜑 → 1 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 Ⅎwnf 1786 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 (class class class)co 7275 Fincfn 8733 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 · cmul 10876 +∞cpnf 11006 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 [,)cico 13081 ∏cprod 15615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 |
This theorem is referenced by: fprodle 15706 |
Copyright terms: Public domain | W3C validator |