MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge1 Structured version   Visualization version   GIF version

Theorem fprodge1 15182
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph 𝑘𝜑
fprodge1.a (𝜑𝐴 ∈ Fin)
fprodge1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge1.ge ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
Assertion
Ref Expression
fprodge1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10547 . 2 1 ∈ ℝ*
2 pnfxr 10541 . 2 +∞ ∈ ℝ*
3 fprodge1.ph . . 3 𝑘𝜑
4 1re 10487 . . . . . 6 1 ∈ ℝ
5 icossre 12667 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ)
64, 2, 5mp2an 688 . . . . 5 (1[,)+∞) ⊆ ℝ
7 ax-resscn 10440 . . . . 5 ℝ ⊆ ℂ
86, 7sstri 3898 . . . 4 (1[,)+∞) ⊆ ℂ
98a1i 11 . . 3 (𝜑 → (1[,)+∞) ⊆ ℂ)
101a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*)
112a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*)
126sseli 3885 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
1312adantr 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
146sseli 3885 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
1514adantl 482 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
1613, 15remulcld 10517 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ)
1716rexrd 10537 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*)
18 1t1e1 11647 . . . . . 6 (1 · 1) = 1
194a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ)
20 0le1 11011 . . . . . . . 8 0 ≤ 1
2120a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1)
22 icogelb 12638 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
231, 2, 22mp3an12 1443 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
2423adantr 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
25 icogelb 12638 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
261, 2, 25mp3an12 1443 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2726adantl 482 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 11430 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦))
2918, 28eqbrtrrid 4998 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦))
3016ltpnfd 12366 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞)
3110, 11, 17, 29, 30elicod 12637 . . . 4 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞))
3231adantl 482 . . 3 ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞))
33 fprodge1.a . . 3 (𝜑𝐴 ∈ Fin)
341a1i 11 . . . 4 ((𝜑𝑘𝐴) → 1 ∈ ℝ*)
352a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
36 fprodge1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3736rexrd 10537 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
38 fprodge1.ge . . . 4 ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
3936ltpnfd 12366 . . . 4 ((𝜑𝑘𝐴) → 𝐵 < +∞)
4034, 35, 37, 38, 39elicod 12637 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (1[,)+∞))
41 1le1 11116 . . . . 5 1 ≤ 1
42 ltpnf 12365 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
434, 42ax-mp 5 . . . . 5 1 < +∞
44 elico2 12650 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)))
454, 2, 44mp2an 688 . . . . 5 (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))
464, 41, 43, 45mpbir3an 1334 . . . 4 1 ∈ (1[,)+∞)
4746a1i 11 . . 3 (𝜑 → 1 ∈ (1[,)+∞))
483, 9, 32, 33, 40, 47fprodcllemf 15145 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (1[,)+∞))
49 icogelb 12638 . 2 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘𝐴 𝐵)
501, 2, 48, 49mp3an12i 1457 1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1080  wnf 1765  wcel 2081  wss 3859   class class class wbr 4962  (class class class)co 7016  Fincfn 8357  cc 10381  cr 10382  0cc0 10383  1c1 10384   · cmul 10388  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  [,)cico 12590  cprod 15092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-oi 8820  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-ico 12594  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-prod 15093
This theorem is referenced by:  fprodle  15183
  Copyright terms: Public domain W3C validator