MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodge1 Structured version   Visualization version   GIF version

Theorem fprodge1 15633
Description: If all of the terms of a finite product are greater than or equal to 1, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodge1.ph 𝑘𝜑
fprodge1.a (𝜑𝐴 ∈ Fin)
fprodge1.b ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
fprodge1.ge ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
Assertion
Ref Expression
fprodge1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem fprodge1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1xr 10965 . 2 1 ∈ ℝ*
2 pnfxr 10960 . 2 +∞ ∈ ℝ*
3 fprodge1.ph . . 3 𝑘𝜑
4 1re 10906 . . . . . 6 1 ∈ ℝ
5 icossre 13089 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1[,)+∞) ⊆ ℝ)
64, 2, 5mp2an 688 . . . . 5 (1[,)+∞) ⊆ ℝ
7 ax-resscn 10859 . . . . 5 ℝ ⊆ ℂ
86, 7sstri 3926 . . . 4 (1[,)+∞) ⊆ ℂ
98a1i 11 . . 3 (𝜑 → (1[,)+∞) ⊆ ℂ)
101a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ*)
112a1i 11 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → +∞ ∈ ℝ*)
126sseli 3913 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 𝑥 ∈ ℝ)
1312adantr 480 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑥 ∈ ℝ)
146sseli 3913 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 𝑦 ∈ ℝ)
1514adantl 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 𝑦 ∈ ℝ)
1613, 15remulcld 10936 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ)
1716rexrd 10956 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ ℝ*)
18 1t1e1 12065 . . . . . 6 (1 · 1) = 1
194a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ∈ ℝ)
20 0le1 11428 . . . . . . . 8 0 ≤ 1
2120a1i 11 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 0 ≤ 1)
22 icogelb 13059 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑥 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
231, 2, 22mp3an12 1449 . . . . . . . 8 (𝑥 ∈ (1[,)+∞) → 1 ≤ 𝑥)
2423adantr 480 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑥)
25 icogelb 13059 . . . . . . . . 9 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
261, 2, 25mp3an12 1449 . . . . . . . 8 (𝑦 ∈ (1[,)+∞) → 1 ≤ 𝑦)
2726adantl 481 . . . . . . 7 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ 𝑦)
2819, 13, 19, 15, 21, 21, 24, 27lemul12ad 11847 . . . . . 6 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (1 · 1) ≤ (𝑥 · 𝑦))
2918, 28eqbrtrrid 5106 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → 1 ≤ (𝑥 · 𝑦))
3016ltpnfd 12786 . . . . 5 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) < +∞)
3110, 11, 17, 29, 30elicod 13058 . . . 4 ((𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞)) → (𝑥 · 𝑦) ∈ (1[,)+∞))
3231adantl 481 . . 3 ((𝜑 ∧ (𝑥 ∈ (1[,)+∞) ∧ 𝑦 ∈ (1[,)+∞))) → (𝑥 · 𝑦) ∈ (1[,)+∞))
33 fprodge1.a . . 3 (𝜑𝐴 ∈ Fin)
341a1i 11 . . . 4 ((𝜑𝑘𝐴) → 1 ∈ ℝ*)
352a1i 11 . . . 4 ((𝜑𝑘𝐴) → +∞ ∈ ℝ*)
36 fprodge1.b . . . . 5 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)
3736rexrd 10956 . . . 4 ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ*)
38 fprodge1.ge . . . 4 ((𝜑𝑘𝐴) → 1 ≤ 𝐵)
3936ltpnfd 12786 . . . 4 ((𝜑𝑘𝐴) → 𝐵 < +∞)
4034, 35, 37, 38, 39elicod 13058 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (1[,)+∞))
41 1le1 11533 . . . . 5 1 ≤ 1
42 ltpnf 12785 . . . . . 6 (1 ∈ ℝ → 1 < +∞)
434, 42ax-mp 5 . . . . 5 1 < +∞
44 elico2 13072 . . . . . 6 ((1 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞)))
454, 2, 44mp2an 688 . . . . 5 (1 ∈ (1[,)+∞) ↔ (1 ∈ ℝ ∧ 1 ≤ 1 ∧ 1 < +∞))
464, 41, 43, 45mpbir3an 1339 . . . 4 1 ∈ (1[,)+∞)
4746a1i 11 . . 3 (𝜑 → 1 ∈ (1[,)+∞))
483, 9, 32, 33, 40, 47fprodcllemf 15596 . 2 (𝜑 → ∏𝑘𝐴 𝐵 ∈ (1[,)+∞))
49 icogelb 13059 . 2 ((1 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘𝐴 𝐵 ∈ (1[,)+∞)) → 1 ≤ ∏𝑘𝐴 𝐵)
501, 2, 48, 49mp3an12i 1463 1 (𝜑 → 1 ≤ ∏𝑘𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085  wnf 1787  wcel 2108  wss 3883   class class class wbr 5070  (class class class)co 7255  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  [,)cico 13010  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  fprodle  15634
  Copyright terms: Public domain W3C validator