| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodge0 | Structured version Visualization version GIF version | ||
| Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge0.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge0.0leb | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge0 | ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11280 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr 11287 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge0.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | rge0ssre 13471 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | ax-resscn 11184 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 6 | 4, 5 | sstri 3968 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 8 | ge0mulcl 13476 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞)) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞)) |
| 10 | fprodge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | fprodge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 12 | fprodge0.0leb | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 13 | elrege0 13469 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 15 | 1re 11233 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 16 | 0le1 11758 | . . . . 5 ⊢ 0 ≤ 1 | |
| 17 | ltpnf 13134 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 19 | 0re 11235 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 20 | elico2 13425 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))) | |
| 21 | 19, 2, 20 | mp2an 692 | . . . . 5 ⊢ (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)) |
| 22 | 15, 16, 18, 21 | mpbir3an 1342 | . . . 4 ⊢ 1 ∈ (0[,)+∞) |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0[,)+∞)) |
| 24 | 3, 7, 9, 10, 14, 23 | fprodcllemf 15972 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 25 | icogelb 13411 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 26 | 1, 2, 24, 25 | mp3an12i 1467 | 1 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1783 ∈ wcel 2108 ⊆ wss 3926 class class class wbr 5119 (class class class)co 7403 Fincfn 8957 ℂcc 11125 ℝcr 11126 0cc0 11127 1c1 11128 · cmul 11132 +∞cpnf 11264 ℝ*cxr 11266 < clt 11267 ≤ cle 11268 [,)cico 13362 ∏cprod 15917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-inf2 9653 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-pre-sup 11205 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-div 11893 df-nn 12239 df-2 12301 df-3 12302 df-n0 12500 df-z 12587 df-uz 12851 df-rp 13007 df-ico 13366 df-fz 13523 df-fzo 13670 df-seq 14018 df-exp 14078 df-hash 14347 df-cj 15116 df-re 15117 df-im 15118 df-sqrt 15252 df-abs 15253 df-clim 15502 df-prod 15918 |
| This theorem is referenced by: fprodle 16010 hoiprodcl 46524 hoiprodcl3 46557 hoidmvcl 46559 hsphoidmvle2 46562 hsphoidmvle 46563 |
| Copyright terms: Public domain | W3C validator |