| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodge0 | Structured version Visualization version GIF version | ||
| Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge0.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge0.0leb | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge0 | ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11221 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr 11228 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge0.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | rge0ssre 13417 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | ax-resscn 11125 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 6 | 4, 5 | sstri 3956 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 8 | ge0mulcl 13422 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞)) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞)) |
| 10 | fprodge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | fprodge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 12 | fprodge0.0leb | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 13 | elrege0 13415 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 15 | 1re 11174 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 16 | 0le1 11701 | . . . . 5 ⊢ 0 ≤ 1 | |
| 17 | ltpnf 13080 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 19 | 0re 11176 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 20 | elico2 13371 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))) | |
| 21 | 19, 2, 20 | mp2an 692 | . . . . 5 ⊢ (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)) |
| 22 | 15, 16, 18, 21 | mpbir3an 1342 | . . . 4 ⊢ 1 ∈ (0[,)+∞) |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0[,)+∞)) |
| 24 | 3, 7, 9, 10, 14, 23 | fprodcllemf 15924 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 25 | icogelb 13357 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 26 | 1, 2, 24, 25 | mp3an12i 1467 | 1 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1783 ∈ wcel 2109 ⊆ wss 3914 class class class wbr 5107 (class class class)co 7387 Fincfn 8918 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 · cmul 11073 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 ≤ cle 11209 [,)cico 13308 ∏cprod 15869 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-prod 15870 |
| This theorem is referenced by: fprodle 15962 hoiprodcl 46545 hoiprodcl3 46578 hoidmvcl 46580 hsphoidmvle2 46583 hsphoidmvle 46584 |
| Copyright terms: Public domain | W3C validator |