| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodge0 | Structured version Visualization version GIF version | ||
| Description: If all the terms of a finite product are nonnegative, so is the product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodge0.kph | ⊢ Ⅎ𝑘𝜑 |
| fprodge0.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodge0.b | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| fprodge0.0leb | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| fprodge0 | ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr 11166 | . 2 ⊢ 0 ∈ ℝ* | |
| 2 | pnfxr 11173 | . 2 ⊢ +∞ ∈ ℝ* | |
| 3 | fprodge0.kph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 4 | rge0ssre 13358 | . . . . 5 ⊢ (0[,)+∞) ⊆ ℝ | |
| 5 | ax-resscn 11070 | . . . . 5 ⊢ ℝ ⊆ ℂ | |
| 6 | 4, 5 | sstri 3940 | . . . 4 ⊢ (0[,)+∞) ⊆ ℂ |
| 7 | 6 | a1i 11 | . . 3 ⊢ (𝜑 → (0[,)+∞) ⊆ ℂ) |
| 8 | ge0mulcl 13363 | . . . 4 ⊢ ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 · 𝑦) ∈ (0[,)+∞)) | |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 · 𝑦) ∈ (0[,)+∞)) |
| 10 | fprodge0.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 11 | fprodge0.b | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 12 | fprodge0.0leb | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 13 | elrege0 13356 | . . . 4 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 14 | 11, 12, 13 | sylanbrc 583 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 15 | 1re 11119 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 16 | 0le1 11647 | . . . . 5 ⊢ 0 ≤ 1 | |
| 17 | ltpnf 13021 | . . . . . 6 ⊢ (1 ∈ ℝ → 1 < +∞) | |
| 18 | 15, 17 | ax-mp 5 | . . . . 5 ⊢ 1 < +∞ |
| 19 | 0re 11121 | . . . . . 6 ⊢ 0 ∈ ℝ | |
| 20 | elico2 13312 | . . . . . 6 ⊢ ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))) | |
| 21 | 19, 2, 20 | mp2an 692 | . . . . 5 ⊢ (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)) |
| 22 | 15, 16, 18, 21 | mpbir3an 1342 | . . . 4 ⊢ 1 ∈ (0[,)+∞) |
| 23 | 22 | a1i 11 | . . 3 ⊢ (𝜑 → 1 ∈ (0[,)+∞)) |
| 24 | 3, 7, 9, 10, 14, 23 | fprodcllemf 15867 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) |
| 25 | icogelb 13298 | . 2 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ∏𝑘 ∈ 𝐴 𝐵 ∈ (0[,)+∞)) → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) | |
| 26 | 1, 2, 24, 25 | mp3an12i 1467 | 1 ⊢ (𝜑 → 0 ≤ ∏𝑘 ∈ 𝐴 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1784 ∈ wcel 2113 ⊆ wss 3898 class class class wbr 5093 (class class class)co 7352 Fincfn 8875 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 · cmul 11018 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 ≤ cle 11154 [,)cico 13249 ∏cprod 15812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-ico 13253 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 |
| This theorem is referenced by: fprodle 15905 hoiprodcl 46669 hoiprodcl3 46702 hoidmvcl 46704 hsphoidmvle2 46707 hsphoidmvle 46708 |
| Copyright terms: Public domain | W3C validator |