Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ad2en | Structured version Visualization version GIF version |
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0ad2en.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0ad2en | ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1917 | . 2 ⊢ Ⅎ𝑛𝜑 | |
2 | 0xr 11022 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*) |
4 | pnfxr 11029 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*) |
6 | rge0ssre 13188 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ | |
7 | sge0ad2en.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) | |
8 | 6, 7 | sselid 3919 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
10 | 2re 12047 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ) |
12 | nnnn0 12240 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
14 | 11, 13 | reexpcld 13881 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ) |
15 | 2cnd 12051 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℂ) | |
16 | 2ne0 12077 | . . . . . . 7 ⊢ 2 ≠ 0 | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ≠ 0) |
18 | 13 | nn0zd 12424 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
19 | 15, 17, 18 | expne0d 13870 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
20 | 9, 14, 19 | redivcld 11803 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ) |
21 | 20 | rexrd 11025 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*) |
22 | 2rp 12735 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ+) |
24 | 23, 18 | rpexpcld 13962 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
26 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | icogelb 13130 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴) | |
28 | 25, 26, 7, 27 | syl3anc 1370 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐴) |
29 | 28 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ 𝐴) |
30 | 9, 24, 29 | divge0d 12812 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛))) |
31 | 20 | ltpnfd 12857 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞) |
32 | 3, 5, 21, 30, 31 | elicod 13129 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞)) |
33 | 1zzd 12351 | . 2 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | nnuz 12621 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
35 | 8 | recnd 11003 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
36 | eqid 2738 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) | |
37 | 36 | geo2lim 15587 | . . 3 ⊢ (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
38 | 35, 37 | syl 17 | . 2 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
39 | 1, 32, 33, 34, 38 | sge0isummpt 43968 | 1 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 ↦ cmpt 5157 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 +∞cpnf 11006 ℝ*cxr 11008 ≤ cle 11010 / cdiv 11632 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℝ+crp 12730 [,)cico 13081 seqcseq 13721 ↑cexp 13782 ⇝ cli 15193 Σ^csumge0 43900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-sumge0 43901 |
This theorem is referenced by: ovnsubaddlem1 44108 ovolval5lem1 44190 |
Copyright terms: Public domain | W3C validator |