Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ad2en Structured version   Visualization version   GIF version

Theorem sge0ad2en 43859
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
sge0ad2en.1 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0ad2en (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛

Proof of Theorem sge0ad2en
StepHypRef Expression
1 nfv 1918 . 2 𝑛𝜑
2 0xr 10953 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
4 pnfxr 10960 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
6 rge0ssre 13117 . . . . . . 7 (0[,)+∞) ⊆ ℝ
7 sge0ad2en.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
86, 7sselid 3915 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 2re 11977 . . . . . . 7 2 ∈ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
12 nnnn0 12170 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1312adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
1411, 13reexpcld 13809 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
15 2cnd 11981 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
16 2ne0 12007 . . . . . . 7 2 ≠ 0
1716a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ≠ 0)
1813nn0zd 12353 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
1915, 17, 18expne0d 13798 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
209, 14, 19redivcld 11733 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ)
2120rexrd 10956 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*)
22 2rp 12664 . . . . . 6 2 ∈ ℝ+
2322a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ+)
2423, 18rpexpcld 13890 . . . 4 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
252a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
264a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
27 icogelb 13059 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴)
2825, 26, 7, 27syl3anc 1369 . . . . 5 (𝜑 → 0 ≤ 𝐴)
2928adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝐴)
309, 24, 29divge0d 12741 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛)))
3120ltpnfd 12786 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞)
323, 5, 21, 30, 31elicod 13058 . 2 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞))
33 1zzd 12281 . 2 (𝜑 → 1 ∈ ℤ)
34 nnuz 12550 . 2 ℕ = (ℤ‘1)
358recnd 10934 . . 3 (𝜑𝐴 ∈ ℂ)
36 eqid 2738 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))
3736geo2lim 15515 . . 3 (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
3835, 37syl 17 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
391, 32, 33, 34, 38sge0isummpt 43858 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805  +∞cpnf 10937  *cxr 10939  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  +crp 12659  [,)cico 13010  seqcseq 13649  cexp 13710  cli 15121  Σ^csumge0 43790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-sumge0 43791
This theorem is referenced by:  ovnsubaddlem1  43998  ovolval5lem1  44080
  Copyright terms: Public domain W3C validator