Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ad2en Structured version   Visualization version   GIF version

Theorem sge0ad2en 46427
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
sge0ad2en.1 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0ad2en (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛

Proof of Theorem sge0ad2en
StepHypRef Expression
1 nfv 1914 . 2 𝑛𝜑
2 0xr 11287 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
4 pnfxr 11294 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
6 rge0ssre 13478 . . . . . . 7 (0[,)+∞) ⊆ ℝ
7 sge0ad2en.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
86, 7sselid 3961 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 2re 12319 . . . . . . 7 2 ∈ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
12 nnnn0 12513 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1312adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
1411, 13reexpcld 14186 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
15 2cnd 12323 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
16 2ne0 12349 . . . . . . 7 2 ≠ 0
1716a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ≠ 0)
1813nn0zd 12619 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
1915, 17, 18expne0d 14175 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
209, 14, 19redivcld 12074 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ)
2120rexrd 11290 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*)
22 2rp 13018 . . . . . 6 2 ∈ ℝ+
2322a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ+)
2423, 18rpexpcld 14270 . . . 4 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
252a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
264a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
27 icogelb 13418 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴)
2825, 26, 7, 27syl3anc 1373 . . . . 5 (𝜑 → 0 ≤ 𝐴)
2928adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝐴)
309, 24, 29divge0d 13096 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛)))
3120ltpnfd 13142 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞)
323, 5, 21, 30, 31elicod 13417 . 2 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞))
33 1zzd 12628 . 2 (𝜑 → 1 ∈ ℤ)
34 nnuz 12900 . 2 ℕ = (ℤ‘1)
358recnd 11268 . . 3 (𝜑𝐴 ∈ ℂ)
36 eqid 2736 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))
3736geo2lim 15896 . . 3 (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
3835, 37syl 17 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
391, 32, 33, 34, 38sge0isummpt 46426 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2933   class class class wbr 5124  cmpt 5206  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   + caddc 11137  +∞cpnf 11271  *cxr 11273  cle 11275   / cdiv 11899  cn 12245  2c2 12300  0cn0 12506  +crp 13013  [,)cico 13369  seqcseq 14024  cexp 14084  cli 15505  Σ^csumge0 46358
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-sumge0 46359
This theorem is referenced by:  ovnsubaddlem1  46566  ovolval5lem1  46648
  Copyright terms: Public domain W3C validator