![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ad2en | Structured version Visualization version GIF version |
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0ad2en.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0ad2en | ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑛𝜑 | |
2 | 0xr 11289 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*) |
4 | pnfxr 11296 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*) |
6 | rge0ssre 13463 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ | |
7 | sge0ad2en.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) | |
8 | 6, 7 | sselid 3970 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | 8 | adantr 479 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
10 | 2re 12314 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ) |
12 | nnnn0 12507 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
13 | 12 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
14 | 11, 13 | reexpcld 14157 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ) |
15 | 2cnd 12318 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℂ) | |
16 | 2ne0 12344 | . . . . . . 7 ⊢ 2 ≠ 0 | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ≠ 0) |
18 | 13 | nn0zd 12612 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
19 | 15, 17, 18 | expne0d 14146 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
20 | 9, 14, 19 | redivcld 12070 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ) |
21 | 20 | rexrd 11292 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*) |
22 | 2rp 13009 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ+) |
24 | 23, 18 | rpexpcld 14239 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
26 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | icogelb 13405 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴) | |
28 | 25, 26, 7, 27 | syl3anc 1368 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐴) |
29 | 28 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ 𝐴) |
30 | 9, 24, 29 | divge0d 13086 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛))) |
31 | 20 | ltpnfd 13131 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞) |
32 | 3, 5, 21, 30, 31 | elicod 13404 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞)) |
33 | 1zzd 12621 | . 2 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | nnuz 12893 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
35 | 8 | recnd 11270 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
36 | eqid 2725 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) | |
37 | 36 | geo2lim 15851 | . . 3 ⊢ (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
38 | 35, 37 | syl 17 | . 2 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
39 | 1, 32, 33, 34, 38 | sge0isummpt 45853 | 1 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6541 (class class class)co 7414 ℂcc 11134 ℝcr 11135 0cc0 11136 1c1 11137 + caddc 11139 +∞cpnf 11273 ℝ*cxr 11275 ≤ cle 11277 / cdiv 11899 ℕcn 12240 2c2 12295 ℕ0cn0 12500 ℝ+crp 13004 [,)cico 13356 seqcseq 13996 ↑cexp 14056 ⇝ cli 15458 Σ^csumge0 45785 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-ico 13360 df-icc 13361 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-rlim 15463 df-sum 15663 df-sumge0 45786 |
This theorem is referenced by: ovnsubaddlem1 45993 ovolval5lem1 46075 |
Copyright terms: Public domain | W3C validator |