| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ad2en | Structured version Visualization version GIF version | ||
| Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| Ref | Expression |
|---|---|
| sge0ad2en.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
| Ref | Expression |
|---|---|
| sge0ad2en | ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑛𝜑 | |
| 2 | 0xr 11221 | . . . 4 ⊢ 0 ∈ ℝ* | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*) |
| 4 | pnfxr 11228 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | 4 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*) |
| 6 | rge0ssre 13417 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ | |
| 7 | sge0ad2en.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) | |
| 8 | 6, 7 | sselid 3944 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
| 10 | 2re 12260 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ) |
| 12 | nnnn0 12449 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
| 13 | 12 | adantl 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
| 14 | 11, 13 | reexpcld 14128 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ) |
| 15 | 2cnd 12264 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℂ) | |
| 16 | 2ne0 12290 | . . . . . . 7 ⊢ 2 ≠ 0 | |
| 17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ≠ 0) |
| 18 | 13 | nn0zd 12555 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
| 19 | 15, 17, 18 | expne0d 14117 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
| 20 | 9, 14, 19 | redivcld 12010 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ) |
| 21 | 20 | rexrd 11224 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*) |
| 22 | 2rp 12956 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
| 23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ+) |
| 24 | 23, 18 | rpexpcld 14212 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+) |
| 25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
| 26 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → +∞ ∈ ℝ*) |
| 27 | icogelb 13357 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴) | |
| 28 | 25, 26, 7, 27 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐴) |
| 29 | 28 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ 𝐴) |
| 30 | 9, 24, 29 | divge0d 13035 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛))) |
| 31 | 20 | ltpnfd 13081 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞) |
| 32 | 3, 5, 21, 30, 31 | elicod 13356 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞)) |
| 33 | 1zzd 12564 | . 2 ⊢ (𝜑 → 1 ∈ ℤ) | |
| 34 | nnuz 12836 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 35 | 8 | recnd 11202 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 36 | eqid 2729 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) | |
| 37 | 36 | geo2lim 15841 | . . 3 ⊢ (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
| 38 | 35, 37 | syl 17 | . 2 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
| 39 | 1, 32, 33, 34, 38 | sge0isummpt 46428 | 1 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5107 ↦ cmpt 5188 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 +∞cpnf 11205 ℝ*cxr 11207 ≤ cle 11209 / cdiv 11835 ℕcn 12186 2c2 12241 ℕ0cn0 12442 ℝ+crp 12951 [,)cico 13308 seqcseq 13966 ↑cexp 14026 ⇝ cli 15450 Σ^csumge0 46360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-icc 13313 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-rlim 15455 df-sum 15653 df-sumge0 46361 |
| This theorem is referenced by: ovnsubaddlem1 46568 ovolval5lem1 46650 |
| Copyright terms: Public domain | W3C validator |