Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ad2en Structured version   Visualization version   GIF version

Theorem sge0ad2en 43068
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
sge0ad2en.1 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0ad2en (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛

Proof of Theorem sge0ad2en
StepHypRef Expression
1 nfv 1915 . 2 𝑛𝜑
2 0xr 10677 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
4 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
6 rge0ssre 12834 . . . . . . 7 (0[,)+∞) ⊆ ℝ
7 sge0ad2en.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
86, 7sseldi 3913 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 484 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 2re 11699 . . . . . . 7 2 ∈ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
12 nnnn0 11892 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1312adantl 485 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
1411, 13reexpcld 13523 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
15 2cnd 11703 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
16 2ne0 11729 . . . . . . 7 2 ≠ 0
1716a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ≠ 0)
1813nn0zd 12073 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
1915, 17, 18expne0d 13512 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
209, 14, 19redivcld 11457 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ)
2120rexrd 10680 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*)
22 2rp 12382 . . . . . 6 2 ∈ ℝ+
2322a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ+)
2423, 18rpexpcld 13604 . . . 4 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
252a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
264a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
27 icogelb 12776 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴)
2825, 26, 7, 27syl3anc 1368 . . . . 5 (𝜑 → 0 ≤ 𝐴)
2928adantr 484 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝐴)
309, 24, 29divge0d 12459 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛)))
3120ltpnfd 12504 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞)
323, 5, 21, 30, 31elicod 12775 . 2 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞))
33 1zzd 12001 . 2 (𝜑 → 1 ∈ ℤ)
34 nnuz 12269 . 2 ℕ = (ℤ‘1)
358recnd 10658 . . 3 (𝜑𝐴 ∈ ℂ)
36 eqid 2798 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))
3736geo2lim 15223 . . 3 (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
3835, 37syl 17 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
391, 32, 33, 34, 38sge0isummpt 43067 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529  +∞cpnf 10661  *cxr 10663  cle 10665   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  +crp 12377  [,)cico 12728  seqcseq 13364  cexp 13425  cli 14833  Σ^csumge0 42999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-rlim 14838  df-sum 15035  df-sumge0 43000
This theorem is referenced by:  ovnsubaddlem1  43207  ovolval5lem1  43289
  Copyright terms: Public domain W3C validator