Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sge0ad2en Structured version   Visualization version   GIF version

Theorem sge0ad2en 45719
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypothesis
Ref Expression
sge0ad2en.1 (𝜑𝐴 ∈ (0[,)+∞))
Assertion
Ref Expression
sge0ad2en (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Distinct variable groups:   𝐴,𝑛   𝜑,𝑛

Proof of Theorem sge0ad2en
StepHypRef Expression
1 nfv 1909 . 2 𝑛𝜑
2 0xr 11265 . . . 4 0 ∈ ℝ*
32a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ∈ ℝ*)
4 pnfxr 11272 . . . 4 +∞ ∈ ℝ*
54a1i 11 . . 3 ((𝜑𝑛 ∈ ℕ) → +∞ ∈ ℝ*)
6 rge0ssre 13439 . . . . . . 7 (0[,)+∞) ⊆ ℝ
7 sge0ad2en.1 . . . . . . 7 (𝜑𝐴 ∈ (0[,)+∞))
86, 7sselid 3975 . . . . . 6 (𝜑𝐴 ∈ ℝ)
98adantr 480 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 𝐴 ∈ ℝ)
10 2re 12290 . . . . . . 7 2 ∈ ℝ
1110a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ)
12 nnnn0 12483 . . . . . . 7 (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0)
1312adantl 481 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0)
1411, 13reexpcld 14133 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ)
15 2cnd 12294 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℂ)
16 2ne0 12320 . . . . . . 7 2 ≠ 0
1716a1i 11 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 2 ≠ 0)
1813nn0zd 12588 . . . . . 6 ((𝜑𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
1915, 17, 18expne0d 14122 . . . . 5 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0)
209, 14, 19redivcld 12046 . . . 4 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ)
2120rexrd 11268 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*)
22 2rp 12985 . . . . . 6 2 ∈ ℝ+
2322a1i 11 . . . . 5 ((𝜑𝑛 ∈ ℕ) → 2 ∈ ℝ+)
2423, 18rpexpcld 14215 . . . 4 ((𝜑𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+)
252a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℝ*)
264a1i 11 . . . . . 6 (𝜑 → +∞ ∈ ℝ*)
27 icogelb 13381 . . . . . 6 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴)
2825, 26, 7, 27syl3anc 1368 . . . . 5 (𝜑 → 0 ≤ 𝐴)
2928adantr 480 . . . 4 ((𝜑𝑛 ∈ ℕ) → 0 ≤ 𝐴)
309, 24, 29divge0d 13062 . . 3 ((𝜑𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛)))
3120ltpnfd 13107 . . 3 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞)
323, 5, 21, 30, 31elicod 13380 . 2 ((𝜑𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞))
33 1zzd 12597 . 2 (𝜑 → 1 ∈ ℤ)
34 nnuz 12869 . 2 ℕ = (ℤ‘1)
358recnd 11246 . . 3 (𝜑𝐴 ∈ ℂ)
36 eqid 2726 . . . 4 (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))
3736geo2lim 15827 . . 3 (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
3835, 37syl 17 . 2 (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴)
391, 32, 33, 34, 38sge0isummpt 45718 1 (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2934   class class class wbr 5141  cmpt 5224  cfv 6537  (class class class)co 7405  cc 11110  cr 11111  0cc0 11112  1c1 11113   + caddc 11115  +∞cpnf 11249  *cxr 11251  cle 11253   / cdiv 11875  cn 12216  2c2 12271  0cn0 12476  +crp 12980  [,)cico 13332  seqcseq 13972  cexp 14032  cli 15434  Σ^csumge0 45650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-n0 12477  df-z 12563  df-uz 12827  df-rp 12981  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-rlim 15439  df-sum 15639  df-sumge0 45651
This theorem is referenced by:  ovnsubaddlem1  45858  ovolval5lem1  45940
  Copyright terms: Public domain W3C validator