![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sge0ad2en | Structured version Visualization version GIF version |
Description: The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
sge0ad2en.1 | ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) |
Ref | Expression |
---|---|
sge0ad2en | ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1892 | . 2 ⊢ Ⅎ𝑛𝜑 | |
2 | 0xr 10534 | . . . 4 ⊢ 0 ∈ ℝ* | |
3 | 2 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ∈ ℝ*) |
4 | pnfxr 10541 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | 4 | a1i 11 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → +∞ ∈ ℝ*) |
6 | rge0ssre 12694 | . . . . . . 7 ⊢ (0[,)+∞) ⊆ ℝ | |
7 | sge0ad2en.1 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) | |
8 | 6, 7 | sseldi 3887 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℝ) |
9 | 8 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ ℝ) |
10 | 2re 11559 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
11 | 10 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ) |
12 | nnnn0 11752 | . . . . . . 7 ⊢ (𝑛 ∈ ℕ → 𝑛 ∈ ℕ0) | |
13 | 12 | adantl 482 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℕ0) |
14 | 11, 13 | reexpcld 13377 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ) |
15 | 2cnd 11563 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℂ) | |
16 | 2ne0 11589 | . . . . . . 7 ⊢ 2 ≠ 0 | |
17 | 16 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ≠ 0) |
18 | 13 | nn0zd 11934 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ) |
19 | 15, 17, 18 | expne0d 13366 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ≠ 0) |
20 | 9, 14, 19 | redivcld 11316 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ) |
21 | 20 | rexrd 10537 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ ℝ*) |
22 | 2rp 12244 | . . . . . 6 ⊢ 2 ∈ ℝ+ | |
23 | 22 | a1i 11 | . . . . 5 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 2 ∈ ℝ+) |
24 | 23, 18 | rpexpcld 13458 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (2↑𝑛) ∈ ℝ+) |
25 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℝ*) |
26 | 4 | a1i 11 | . . . . . 6 ⊢ (𝜑 → +∞ ∈ ℝ*) |
27 | icogelb 12638 | . . . . . 6 ⊢ ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝐴 ∈ (0[,)+∞)) → 0 ≤ 𝐴) | |
28 | 25, 26, 7, 27 | syl3anc 1364 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐴) |
29 | 28 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ 𝐴) |
30 | 9, 24, 29 | divge0d 12321 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → 0 ≤ (𝐴 / (2↑𝑛))) |
31 | 20 | ltpnfd 12366 | . . 3 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) < +∞) |
32 | 3, 5, 21, 30, 31 | elicod 12637 | . 2 ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → (𝐴 / (2↑𝑛)) ∈ (0[,)+∞)) |
33 | 1zzd 11862 | . 2 ⊢ (𝜑 → 1 ∈ ℤ) | |
34 | nnuz 12130 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
35 | 8 | recnd 10515 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
36 | eqid 2795 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) = (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛))) | |
37 | 36 | geo2lim 15064 | . . 3 ⊢ (𝐴 ∈ ℂ → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
38 | 35, 37 | syl 17 | . 2 ⊢ (𝜑 → seq1( + , (𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) ⇝ 𝐴) |
39 | 1, 32, 33, 34, 38 | sge0isummpt 42254 | 1 ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 class class class wbr 4962 ↦ cmpt 5041 ‘cfv 6225 (class class class)co 7016 ℂcc 10381 ℝcr 10382 0cc0 10383 1c1 10384 + caddc 10386 +∞cpnf 10518 ℝ*cxr 10520 ≤ cle 10522 / cdiv 11145 ℕcn 11486 2c2 11540 ℕ0cn0 11745 ℝ+crp 12239 [,)cico 12590 seqcseq 13219 ↑cexp 13279 ⇝ cli 14675 Σ^csumge0 42186 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-inf2 8950 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 ax-pre-sup 10461 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-se 5403 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-isom 6234 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-pm 8259 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-sup 8752 df-inf 8753 df-oi 8820 df-card 9214 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-div 11146 df-nn 11487 df-2 11548 df-3 11549 df-n0 11746 df-z 11830 df-uz 12094 df-rp 12240 df-ico 12594 df-icc 12595 df-fz 12743 df-fzo 12884 df-fl 13012 df-seq 13220 df-exp 13280 df-hash 13541 df-cj 14292 df-re 14293 df-im 14294 df-sqrt 14428 df-abs 14429 df-clim 14679 df-rlim 14680 df-sum 14877 df-sumge0 42187 |
This theorem is referenced by: ovnsubaddlem1 42394 ovolval5lem1 42476 |
Copyright terms: Public domain | W3C validator |