Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfth Structured version   Visualization version   GIF version

Theorem idfth 49140
Description: The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idfth (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))

Proof of Theorem idfth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17804 . . 3 Rel (𝐷 Func 𝐸)
2 1st2nd 7997 . . 3 ((Rel (𝐷 Func 𝐸) ∧ 𝐼 ∈ (𝐷 Func 𝐸)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
31, 2mpan 690 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
4 id 22 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸))
54func1st2nd 49058 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Func 𝐸)(2nd𝐼))
6 f1oi 6820 . . . . . . . 8 ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)
7 dff1o3 6788 . . . . . . . 8 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) ↔ (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
86, 7mpbi 230 . . . . . . 7 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
98simpri 485 . . . . . 6 Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))
10 idfth.i . . . . . . . . 9 𝐼 = (idfunc𝐶)
11 simpl 482 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐼 ∈ (𝐷 Func 𝐸))
12 eqidd 2730 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐷))
13 simprl 770 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
14 simprr 772 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
15 eqidd 2730 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1610, 11, 12, 13, 14, 15idfu2nda 49085 . . . . . . . 8 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1716cnveqd 5829 . . . . . . 7 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1817funeqd 6522 . . . . . 6 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Fun (𝑥(2nd𝐼)𝑦) ↔ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
199, 18mpbiri 258 . . . . 5 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → Fun (𝑥(2nd𝐼)𝑦))
2019ralrimivva 3178 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦))
21 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2221isfth 17858 . . . 4 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ((1st𝐼)(𝐷 Func 𝐸)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦)))
235, 20, 22sylanbrc 583 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼))
24 df-br 5103 . . 3 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
2523, 24sylib 218 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
263, 25eqeltrd 2828 1 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4591   class class class wbr 5102   I cid 5525  ccnv 5630  cres 5633  Rel wrel 5636  Fun wfun 6493  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207   Func cfunc 17796  idfunccidfu 17797   Faith cfth 17847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17609  df-cid 17610  df-homf 17611  df-func 17800  df-idfu 17801  df-fth 17849
This theorem is referenced by:  idemb  49141
  Copyright terms: Public domain W3C validator