Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfth Structured version   Visualization version   GIF version

Theorem idfth 49163
Description: The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idfth (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))

Proof of Theorem idfth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17769 . . 3 Rel (𝐷 Func 𝐸)
2 1st2nd 7974 . . 3 ((Rel (𝐷 Func 𝐸) ∧ 𝐼 ∈ (𝐷 Func 𝐸)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
31, 2mpan 690 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
4 id 22 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸))
54func1st2nd 49081 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Func 𝐸)(2nd𝐼))
6 f1oi 6802 . . . . . . . 8 ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)
7 dff1o3 6770 . . . . . . . 8 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) ↔ (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
86, 7mpbi 230 . . . . . . 7 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
98simpri 485 . . . . . 6 Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))
10 idfth.i . . . . . . . . 9 𝐼 = (idfunc𝐶)
11 simpl 482 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐼 ∈ (𝐷 Func 𝐸))
12 eqidd 2730 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐷))
13 simprl 770 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
14 simprr 772 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
15 eqidd 2730 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1610, 11, 12, 13, 14, 15idfu2nda 49108 . . . . . . . 8 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1716cnveqd 5818 . . . . . . 7 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1817funeqd 6504 . . . . . 6 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Fun (𝑥(2nd𝐼)𝑦) ↔ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
199, 18mpbiri 258 . . . . 5 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → Fun (𝑥(2nd𝐼)𝑦))
2019ralrimivva 3172 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦))
21 eqid 2729 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2221isfth 17823 . . . 4 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ((1st𝐼)(𝐷 Func 𝐸)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦)))
235, 20, 22sylanbrc 583 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼))
24 df-br 5093 . . 3 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
2523, 24sylib 218 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
263, 25eqeltrd 2828 1 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4583   class class class wbr 5092   I cid 5513  ccnv 5618  cres 5621  Rel wrel 5624  Fun wfun 6476  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  1st c1st 7922  2nd c2nd 7923  Basecbs 17120  Hom chom 17172   Func cfunc 17761  idfunccidfu 17762   Faith cfth 17812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-map 8755  df-ixp 8825  df-cat 17574  df-cid 17575  df-homf 17576  df-func 17765  df-idfu 17766  df-fth 17814
This theorem is referenced by:  idemb  49164
  Copyright terms: Public domain W3C validator