Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idfth Structured version   Visualization version   GIF version

Theorem idfth 49151
Description: The inclusion functor is a faithful functor. (Contributed by Zhi Wang, 10-Nov-2025.)
Hypothesis
Ref Expression
idfth.i 𝐼 = (idfunc𝐶)
Assertion
Ref Expression
idfth (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))

Proof of Theorem idfth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17831 . . 3 Rel (𝐷 Func 𝐸)
2 1st2nd 8021 . . 3 ((Rel (𝐷 Func 𝐸) ∧ 𝐼 ∈ (𝐷 Func 𝐸)) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
31, 2mpan 690 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 = ⟨(1st𝐼), (2nd𝐼)⟩)
4 id 22 . . . . 5 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸))
54func1st2nd 49069 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Func 𝐸)(2nd𝐼))
6 f1oi 6841 . . . . . . . 8 ( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦)
7 dff1o3 6809 . . . . . . . 8 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) ↔ (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
86, 7mpbi 230 . . . . . . 7 (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
98simpri 485 . . . . . 6 Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))
10 idfth.i . . . . . . . . 9 𝐼 = (idfunc𝐶)
11 simpl 482 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐼 ∈ (𝐷 Func 𝐸))
12 eqidd 2731 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐷))
13 simprl 770 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷))
14 simprr 772 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷))
15 eqidd 2731 . . . . . . . . 9 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦))
1610, 11, 12, 13, 14, 15idfu2nda 49096 . . . . . . . 8 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1716cnveqd 5842 . . . . . . 7 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦)))
1817funeqd 6541 . . . . . 6 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Fun (𝑥(2nd𝐼)𝑦) ↔ Fun ( I ↾ (𝑥(Hom ‘𝐷)𝑦))))
199, 18mpbiri 258 . . . . 5 ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → Fun (𝑥(2nd𝐼)𝑦))
2019ralrimivva 3181 . . . 4 (𝐼 ∈ (𝐷 Func 𝐸) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦))
21 eqid 2730 . . . . 5 (Base‘𝐷) = (Base‘𝐷)
2221isfth 17885 . . . 4 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ((1st𝐼)(𝐷 Func 𝐸)(2nd𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun (𝑥(2nd𝐼)𝑦)))
235, 20, 22sylanbrc 583 . . 3 (𝐼 ∈ (𝐷 Func 𝐸) → (1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼))
24 df-br 5111 . . 3 ((1st𝐼)(𝐷 Faith 𝐸)(2nd𝐼) ↔ ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
2523, 24sylib 218 . 2 (𝐼 ∈ (𝐷 Func 𝐸) → ⟨(1st𝐼), (2nd𝐼)⟩ ∈ (𝐷 Faith 𝐸))
263, 25eqeltrd 2829 1 (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cop 4598   class class class wbr 5110   I cid 5535  ccnv 5640  cres 5643  Rel wrel 5646  Fun wfun 6508  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  Basecbs 17186  Hom chom 17238   Func cfunc 17823  idfunccidfu 17824   Faith cfth 17874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-map 8804  df-ixp 8874  df-cat 17636  df-cid 17637  df-homf 17638  df-func 17827  df-idfu 17828  df-fth 17876
This theorem is referenced by:  idemb  49152
  Copyright terms: Public domain W3C validator