| Step | Hyp | Ref
| Expression |
| 1 | | relfunc 17873 |
. . 3
⊢ Rel
(𝐷 Func 𝐸) |
| 2 | | 1st2nd 8036 |
. . 3
⊢ ((Rel
(𝐷 Func 𝐸) ∧ 𝐼 ∈ (𝐷 Func 𝐸)) → 𝐼 = 〈(1st ‘𝐼), (2nd ‘𝐼)〉) |
| 3 | 1, 2 | mpan 690 |
. 2
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 = 〈(1st ‘𝐼), (2nd ‘𝐼)〉) |
| 4 | | id 22 |
. . . . 5
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Func 𝐸)) |
| 5 | 4 | func1st2nd 48991 |
. . . 4
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼)) |
| 6 | | f1oi 6855 |
. . . . . . . 8
⊢ ( I
↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) |
| 7 | | dff1o3 6823 |
. . . . . . . 8
⊢ (( I
↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–1-1-onto→(𝑥(Hom ‘𝐷)𝑦) ↔ (( I ↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ◡( I ↾ (𝑥(Hom ‘𝐷)𝑦)))) |
| 8 | 6, 7 | mpbi 230 |
. . . . . . 7
⊢ (( I
↾ (𝑥(Hom ‘𝐷)𝑦)):(𝑥(Hom ‘𝐷)𝑦)–onto→(𝑥(Hom ‘𝐷)𝑦) ∧ Fun ◡( I ↾ (𝑥(Hom ‘𝐷)𝑦))) |
| 9 | 8 | simpri 485 |
. . . . . 6
⊢ Fun ◡( I ↾ (𝑥(Hom ‘𝐷)𝑦)) |
| 10 | | idfth.i |
. . . . . . . . 9
⊢ 𝐼 =
(idfunc‘𝐶) |
| 11 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝐼 ∈ (𝐷 Func 𝐸)) |
| 12 | | eqidd 2736 |
. . . . . . . . 9
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Base‘𝐷) = (Base‘𝐷)) |
| 13 | | simprl 770 |
. . . . . . . . 9
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑥 ∈ (Base‘𝐷)) |
| 14 | | simprr 772 |
. . . . . . . . 9
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → 𝑦 ∈ (Base‘𝐷)) |
| 15 | | eqidd 2736 |
. . . . . . . . 9
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(Hom ‘𝐷)𝑦) = (𝑥(Hom ‘𝐷)𝑦)) |
| 16 | 10, 11, 12, 13, 14, 15 | idfu2nda 49010 |
. . . . . . . 8
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (𝑥(2nd ‘𝐼)𝑦) = ( I ↾ (𝑥(Hom ‘𝐷)𝑦))) |
| 17 | 16 | cnveqd 5855 |
. . . . . . 7
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → ◡(𝑥(2nd ‘𝐼)𝑦) = ◡( I ↾ (𝑥(Hom ‘𝐷)𝑦))) |
| 18 | 17 | funeqd 6557 |
. . . . . 6
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → (Fun ◡(𝑥(2nd ‘𝐼)𝑦) ↔ Fun ◡( I ↾ (𝑥(Hom ‘𝐷)𝑦)))) |
| 19 | 9, 18 | mpbiri 258 |
. . . . 5
⊢ ((𝐼 ∈ (𝐷 Func 𝐸) ∧ (𝑥 ∈ (Base‘𝐷) ∧ 𝑦 ∈ (Base‘𝐷))) → Fun ◡(𝑥(2nd ‘𝐼)𝑦)) |
| 20 | 19 | ralrimivva 3187 |
. . . 4
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun ◡(𝑥(2nd ‘𝐼)𝑦)) |
| 21 | | eqid 2735 |
. . . . 5
⊢
(Base‘𝐷) =
(Base‘𝐷) |
| 22 | 21 | isfth 17927 |
. . . 4
⊢
((1st ‘𝐼)(𝐷 Faith 𝐸)(2nd ‘𝐼) ↔ ((1st ‘𝐼)(𝐷 Func 𝐸)(2nd ‘𝐼) ∧ ∀𝑥 ∈ (Base‘𝐷)∀𝑦 ∈ (Base‘𝐷)Fun ◡(𝑥(2nd ‘𝐼)𝑦))) |
| 23 | 5, 20, 22 | sylanbrc 583 |
. . 3
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → (1st ‘𝐼)(𝐷 Faith 𝐸)(2nd ‘𝐼)) |
| 24 | | df-br 5120 |
. . 3
⊢
((1st ‘𝐼)(𝐷 Faith 𝐸)(2nd ‘𝐼) ↔ 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐷 Faith 𝐸)) |
| 25 | 23, 24 | sylib 218 |
. 2
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 〈(1st ‘𝐼), (2nd ‘𝐼)〉 ∈ (𝐷 Faith 𝐸)) |
| 26 | 3, 25 | eqeltrd 2834 |
1
⊢ (𝐼 ∈ (𝐷 Func 𝐸) → 𝐼 ∈ (𝐷 Faith 𝐸)) |