![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > prmo3 | Structured version Visualization version GIF version |
Description: The primorial of 3. (Contributed by AV, 28-Aug-2020.) |
Ref | Expression |
---|---|
prmo3 | ⊢ (#p‘3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3nn 11391 | . . 3 ⊢ 3 ∈ ℕ | |
2 | prmonn2 16075 | . . 3 ⊢ (3 ∈ ℕ → (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) |
4 | 3prm 15739 | . . . 4 ⊢ 3 ∈ ℙ | |
5 | 4 | iftruei 4285 | . . 3 ⊢ if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = ((#p‘(3 − 1)) · 3) |
6 | 3m1e2 11447 | . . . . . . 7 ⊢ (3 − 1) = 2 | |
7 | 6 | fveq2i 6415 | . . . . . 6 ⊢ (#p‘(3 − 1)) = (#p‘2) |
8 | prmo2 16076 | . . . . . 6 ⊢ (#p‘2) = 2 | |
9 | 7, 8 | eqtri 2822 | . . . . 5 ⊢ (#p‘(3 − 1)) = 2 |
10 | 9 | oveq1i 6889 | . . . 4 ⊢ ((#p‘(3 − 1)) · 3) = (2 · 3) |
11 | 3cn 11393 | . . . . 5 ⊢ 3 ∈ ℂ | |
12 | 2cn 11387 | . . . . 5 ⊢ 2 ∈ ℂ | |
13 | 3t2e6 11485 | . . . . 5 ⊢ (3 · 2) = 6 | |
14 | 11, 12, 13 | mulcomli 10339 | . . . 4 ⊢ (2 · 3) = 6 |
15 | 10, 14 | eqtri 2822 | . . 3 ⊢ ((#p‘(3 − 1)) · 3) = 6 |
16 | 5, 15 | eqtri 2822 | . 2 ⊢ if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = 6 |
17 | 3, 16 | eqtri 2822 | 1 ⊢ (#p‘3) = 6 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ifcif 4278 ‘cfv 6102 (class class class)co 6879 1c1 10226 · cmul 10230 − cmin 10557 ℕcn 11313 2c2 11367 3c3 11368 6c6 11371 ℙcprime 15718 #pcprmo 16067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-2o 7801 df-oadd 7804 df-er 7983 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-sup 8591 df-inf 8592 df-oi 8658 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-4 11377 df-5 11378 df-6 11379 df-n0 11580 df-z 11666 df-uz 11930 df-rp 12074 df-fz 12580 df-fzo 12720 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-clim 14559 df-prod 14972 df-dvds 15319 df-prm 15719 df-prmo 16068 |
This theorem is referenced by: prmo4 16161 |
Copyright terms: Public domain | W3C validator |