MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmo3 Structured version   Visualization version   GIF version

Theorem prmo3 16077
Description: The primorial of 3. (Contributed by AV, 28-Aug-2020.)
Assertion
Ref Expression
prmo3 (#p‘3) = 6

Proof of Theorem prmo3
StepHypRef Expression
1 3nn 11391 . . 3 3 ∈ ℕ
2 prmonn2 16075 . . 3 (3 ∈ ℕ → (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))))
31, 2ax-mp 5 . 2 (#p‘3) = if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1)))
4 3prm 15739 . . . 4 3 ∈ ℙ
54iftruei 4285 . . 3 if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = ((#p‘(3 − 1)) · 3)
6 3m1e2 11447 . . . . . . 7 (3 − 1) = 2
76fveq2i 6415 . . . . . 6 (#p‘(3 − 1)) = (#p‘2)
8 prmo2 16076 . . . . . 6 (#p‘2) = 2
97, 8eqtri 2822 . . . . 5 (#p‘(3 − 1)) = 2
109oveq1i 6889 . . . 4 ((#p‘(3 − 1)) · 3) = (2 · 3)
11 3cn 11393 . . . . 5 3 ∈ ℂ
12 2cn 11387 . . . . 5 2 ∈ ℂ
13 3t2e6 11485 . . . . 5 (3 · 2) = 6
1411, 12, 13mulcomli 10339 . . . 4 (2 · 3) = 6
1510, 14eqtri 2822 . . 3 ((#p‘(3 − 1)) · 3) = 6
165, 15eqtri 2822 . 2 if(3 ∈ ℙ, ((#p‘(3 − 1)) · 3), (#p‘(3 − 1))) = 6
173, 16eqtri 2822 1 (#p‘3) = 6
Colors of variables: wff setvar class
Syntax hints:   = wceq 1653  wcel 2157  ifcif 4278  cfv 6102  (class class class)co 6879  1c1 10226   · cmul 10230  cmin 10557  cn 11313  2c2 11367  3c3 11368  6c6 11371  cprime 15718  #pcprmo 16067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-inf2 8789  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-om 7301  df-1st 7402  df-2nd 7403  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-2o 7801  df-oadd 7804  df-er 7983  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-n0 11580  df-z 11666  df-uz 11930  df-rp 12074  df-fz 12580  df-fzo 12720  df-seq 13055  df-exp 13114  df-hash 13370  df-cj 14179  df-re 14180  df-im 14181  df-sqrt 14315  df-abs 14316  df-clim 14559  df-prod 14972  df-dvds 15319  df-prm 15719  df-prmo 16068
This theorem is referenced by:  prmo4  16161
  Copyright terms: Public domain W3C validator