MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zzngim Structured version   Visualization version   GIF version

Theorem zzngim 21469
Description: The ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
zzngim.y 𝑌 = (ℤ/nℤ‘0)
zzngim.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zzngim 𝐿 ∈ (ℤring GrpIso 𝑌)

Proof of Theorem zzngim
StepHypRef Expression
1 0nn0 12464 . . . 4 0 ∈ ℕ0
2 zzngim.y . . . . 5 𝑌 = (ℤ/nℤ‘0)
32zncrng 21461 . . . 4 (0 ∈ ℕ0𝑌 ∈ CRing)
4 crngring 20161 . . . 4 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
51, 3, 4mp2b 10 . . 3 𝑌 ∈ Ring
6 zzngim.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
76zrhrhm 21428 . . 3 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
8 rhmghm 20400 . . 3 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
95, 7, 8mp2b 10 . 2 𝐿 ∈ (ℤring GrpHom 𝑌)
10 eqid 2730 . . . 4 (Base‘𝑌) = (Base‘𝑌)
112, 10, 6znzrhfo 21464 . . . . . . 7 (0 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
121, 11ax-mp 5 . . . . . 6 𝐿:ℤ–onto→(Base‘𝑌)
13 fofn 6777 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿 Fn ℤ)
14 fnresdm 6640 . . . . . 6 (𝐿 Fn ℤ → (𝐿 ↾ ℤ) = 𝐿)
1512, 13, 14mp2b 10 . . . . 5 (𝐿 ↾ ℤ) = 𝐿
166reseq1i 5949 . . . . 5 (𝐿 ↾ ℤ) = ((ℤRHom‘𝑌) ↾ ℤ)
1715, 16eqtr3i 2755 . . . 4 𝐿 = ((ℤRHom‘𝑌) ↾ ℤ)
18 eqid 2730 . . . . . 6 0 = 0
1918iftruei 4498 . . . . 5 if(0 = 0, ℤ, (0..^0)) = ℤ
2019eqcomi 2739 . . . 4 ℤ = if(0 = 0, ℤ, (0..^0))
212, 10, 17, 20znf1o 21468 . . 3 (0 ∈ ℕ0𝐿:ℤ–1-1-onto→(Base‘𝑌))
221, 21ax-mp 5 . 2 𝐿:ℤ–1-1-onto→(Base‘𝑌)
23 zringbas 21370 . . 3 ℤ = (Base‘ℤring)
2423, 10isgim 19201 . 2 (𝐿 ∈ (ℤring GrpIso 𝑌) ↔ (𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝐿:ℤ–1-1-onto→(Base‘𝑌)))
259, 22, 24mpbir2an 711 1 𝐿 ∈ (ℤring GrpIso 𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  ifcif 4491  cres 5643   Fn wfn 6509  ontowfo 6512  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  0cc0 11075  0cn0 12449  cz 12536  ..^cfzo 13622  Basecbs 17186   GrpHom cghm 19151   GrpIso cgim 19196  Ringcrg 20149  CRingccrg 20150   RingHom crh 20385  ringczring 21363  ℤRHomczrh 21416  ℤ/nczn 21419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-dvds 16230  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-0g 17411  df-imas 17478  df-qus 17479  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-nsg 19063  df-eqg 19064  df-ghm 19152  df-gim 19198  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-rhm 20388  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-2idl 21167  df-cnfld 21272  df-zring 21364  df-zrh 21420  df-zn 21423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator