![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zzngim | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zzngim.y | ⊢ 𝑌 = (ℤ/nℤ‘0) |
zzngim.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
Ref | Expression |
---|---|
zzngim | ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 11597 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | zzngim.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘0) | |
3 | 2 | zncrng 20214 | . . . 4 ⊢ (0 ∈ ℕ0 → 𝑌 ∈ CRing) |
4 | crngring 18874 | . . . 4 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ 𝑌 ∈ Ring |
6 | zzngim.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
7 | 6 | zrhrhm 20182 | . . 3 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
8 | rhmghm 19043 | . . 3 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
9 | 5, 7, 8 | mp2b 10 | . 2 ⊢ 𝐿 ∈ (ℤring GrpHom 𝑌) |
10 | eqid 2799 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
11 | 2, 10, 6 | znzrhfo 20217 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
12 | 1, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐿:ℤ–onto→(Base‘𝑌) |
13 | fofn 6333 | . . . . . 6 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿 Fn ℤ) | |
14 | fnresdm 6211 | . . . . . 6 ⊢ (𝐿 Fn ℤ → (𝐿 ↾ ℤ) = 𝐿) | |
15 | 12, 13, 14 | mp2b 10 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = 𝐿 |
16 | 6 | reseq1i 5596 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = ((ℤRHom‘𝑌) ↾ ℤ) |
17 | 15, 16 | eqtr3i 2823 | . . . 4 ⊢ 𝐿 = ((ℤRHom‘𝑌) ↾ ℤ) |
18 | eqid 2799 | . . . . . 6 ⊢ 0 = 0 | |
19 | 18 | iftruei 4284 | . . . . 5 ⊢ if(0 = 0, ℤ, (0..^0)) = ℤ |
20 | 19 | eqcomi 2808 | . . . 4 ⊢ ℤ = if(0 = 0, ℤ, (0..^0)) |
21 | 2, 10, 17, 20 | znf1o 20221 | . . 3 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–1-1-onto→(Base‘𝑌)) |
22 | 1, 21 | ax-mp 5 | . 2 ⊢ 𝐿:ℤ–1-1-onto→(Base‘𝑌) |
23 | zringbas 20146 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
24 | 23, 10 | isgim 18017 | . 2 ⊢ (𝐿 ∈ (ℤring GrpIso 𝑌) ↔ (𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝐿:ℤ–1-1-onto→(Base‘𝑌))) |
25 | 9, 22, 24 | mpbir2an 703 | 1 ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∈ wcel 2157 ifcif 4277 ↾ cres 5314 Fn wfn 6096 –onto→wfo 6099 –1-1-onto→wf1o 6100 ‘cfv 6101 (class class class)co 6878 0cc0 10224 ℕ0cn0 11580 ℤcz 11666 ..^cfzo 12720 Basecbs 16184 GrpHom cghm 17970 GrpIso cgim 18012 Ringcrg 18863 CRingccrg 18864 RingHom crh 19030 ℤringzring 20140 ℤRHomczrh 20170 ℤ/nℤczn 20173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-inf2 8788 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 ax-pre-sup 10302 ax-addf 10303 ax-mulf 10304 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-tpos 7590 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-oadd 7803 df-er 7982 df-ec 7984 df-qs 7988 df-map 8097 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-sup 8590 df-inf 8591 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-div 10977 df-nn 11313 df-2 11376 df-3 11377 df-4 11378 df-5 11379 df-6 11380 df-7 11381 df-8 11382 df-9 11383 df-n0 11581 df-z 11667 df-dec 11784 df-uz 11931 df-rp 12075 df-fz 12581 df-fzo 12721 df-fl 12848 df-mod 12924 df-seq 13056 df-dvds 15320 df-struct 16186 df-ndx 16187 df-slot 16188 df-base 16190 df-sets 16191 df-ress 16192 df-plusg 16280 df-mulr 16281 df-starv 16282 df-sca 16283 df-vsca 16284 df-ip 16285 df-tset 16286 df-ple 16287 df-ds 16289 df-unif 16290 df-0g 16417 df-imas 16483 df-qus 16484 df-mgm 17557 df-sgrp 17599 df-mnd 17610 df-mhm 17650 df-grp 17741 df-minusg 17742 df-sbg 17743 df-mulg 17857 df-subg 17904 df-nsg 17905 df-eqg 17906 df-ghm 17971 df-gim 18014 df-cmn 18510 df-abl 18511 df-mgp 18806 df-ur 18818 df-ring 18865 df-cring 18866 df-oppr 18939 df-dvdsr 18957 df-rnghom 19033 df-subrg 19096 df-lmod 19183 df-lss 19251 df-lsp 19293 df-sra 19495 df-rgmod 19496 df-lidl 19497 df-rsp 19498 df-2idl 19555 df-cnfld 20069 df-zring 20141 df-zrh 20174 df-zn 20177 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |