![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zzngim | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zzngim.y | ⊢ 𝑌 = (ℤ/nℤ‘0) |
zzngim.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
Ref | Expression |
---|---|
zzngim | ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12511 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | zzngim.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘0) | |
3 | 2 | zncrng 21471 | . . . 4 ⊢ (0 ∈ ℕ0 → 𝑌 ∈ CRing) |
4 | crngring 20178 | . . . 4 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ 𝑌 ∈ Ring |
6 | zzngim.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
7 | 6 | zrhrhm 21430 | . . 3 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
8 | rhmghm 20416 | . . 3 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
9 | 5, 7, 8 | mp2b 10 | . 2 ⊢ 𝐿 ∈ (ℤring GrpHom 𝑌) |
10 | eqid 2728 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
11 | 2, 10, 6 | znzrhfo 21474 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
12 | 1, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐿:ℤ–onto→(Base‘𝑌) |
13 | fofn 6807 | . . . . . 6 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿 Fn ℤ) | |
14 | fnresdm 6668 | . . . . . 6 ⊢ (𝐿 Fn ℤ → (𝐿 ↾ ℤ) = 𝐿) | |
15 | 12, 13, 14 | mp2b 10 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = 𝐿 |
16 | 6 | reseq1i 5975 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = ((ℤRHom‘𝑌) ↾ ℤ) |
17 | 15, 16 | eqtr3i 2758 | . . . 4 ⊢ 𝐿 = ((ℤRHom‘𝑌) ↾ ℤ) |
18 | eqid 2728 | . . . . . 6 ⊢ 0 = 0 | |
19 | 18 | iftruei 4531 | . . . . 5 ⊢ if(0 = 0, ℤ, (0..^0)) = ℤ |
20 | 19 | eqcomi 2737 | . . . 4 ⊢ ℤ = if(0 = 0, ℤ, (0..^0)) |
21 | 2, 10, 17, 20 | znf1o 21478 | . . 3 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–1-1-onto→(Base‘𝑌)) |
22 | 1, 21 | ax-mp 5 | . 2 ⊢ 𝐿:ℤ–1-1-onto→(Base‘𝑌) |
23 | zringbas 21372 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
24 | 23, 10 | isgim 19209 | . 2 ⊢ (𝐿 ∈ (ℤring GrpIso 𝑌) ↔ (𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝐿:ℤ–1-1-onto→(Base‘𝑌))) |
25 | 9, 22, 24 | mpbir2an 710 | 1 ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 ∈ wcel 2099 ifcif 4524 ↾ cres 5674 Fn wfn 6537 –onto→wfo 6540 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 0cc0 11132 ℕ0cn0 12496 ℤcz 12582 ..^cfzo 13653 Basecbs 17173 GrpHom cghm 19160 GrpIso cgim 19204 Ringcrg 20166 CRingccrg 20167 RingHom crh 20401 ℤringczring 21365 ℤRHomczrh 21418 ℤ/nℤczn 21421 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 ax-1cn 11190 ax-icn 11191 ax-addcl 11192 ax-addrcl 11193 ax-mulcl 11194 ax-mulrcl 11195 ax-mulcom 11196 ax-addass 11197 ax-mulass 11198 ax-distr 11199 ax-i2m1 11200 ax-1ne0 11201 ax-1rid 11202 ax-rnegex 11203 ax-rrecex 11204 ax-cnre 11205 ax-pre-lttri 11206 ax-pre-lttrn 11207 ax-pre-ltadd 11208 ax-pre-mulgt0 11209 ax-pre-sup 11210 ax-addf 11211 ax-mulf 11212 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8718 df-ec 8720 df-qs 8724 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-sup 9459 df-inf 9460 df-pnf 11274 df-mnf 11275 df-xr 11276 df-ltxr 11277 df-le 11278 df-sub 11470 df-neg 11471 df-div 11896 df-nn 12237 df-2 12299 df-3 12300 df-4 12301 df-5 12302 df-6 12303 df-7 12304 df-8 12305 df-9 12306 df-n0 12497 df-z 12583 df-dec 12702 df-uz 12847 df-rp 13001 df-fz 13511 df-fzo 13654 df-fl 13783 df-mod 13861 df-seq 13993 df-dvds 16225 df-struct 17109 df-sets 17126 df-slot 17144 df-ndx 17156 df-base 17174 df-ress 17203 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17416 df-imas 17483 df-qus 17484 df-mgm 18593 df-sgrp 18672 df-mnd 18688 df-mhm 18733 df-grp 18886 df-minusg 18887 df-sbg 18888 df-mulg 19017 df-subg 19071 df-nsg 19072 df-eqg 19073 df-ghm 19161 df-gim 19206 df-cmn 19730 df-abl 19731 df-mgp 20068 df-rng 20086 df-ur 20115 df-ring 20168 df-cring 20169 df-oppr 20266 df-dvdsr 20289 df-rhm 20404 df-subrng 20476 df-subrg 20501 df-lmod 20738 df-lss 20809 df-lsp 20849 df-sra 21051 df-rgmod 21052 df-lidl 21097 df-rsp 21098 df-2idl 21137 df-cnfld 21273 df-zring 21366 df-zrh 21422 df-zn 21425 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |