MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zzngim Structured version   Visualization version   GIF version

Theorem zzngim 21108
Description: The ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.)
Hypotheses
Ref Expression
zzngim.y 𝑌 = (ℤ/nℤ‘0)
zzngim.2 𝐿 = (ℤRHom‘𝑌)
Assertion
Ref Expression
zzngim 𝐿 ∈ (ℤring GrpIso 𝑌)

Proof of Theorem zzngim
StepHypRef Expression
1 0nn0 12487 . . . 4 0 ∈ ℕ0
2 zzngim.y . . . . 5 𝑌 = (ℤ/nℤ‘0)
32zncrng 21100 . . . 4 (0 ∈ ℕ0𝑌 ∈ CRing)
4 crngring 20068 . . . 4 (𝑌 ∈ CRing → 𝑌 ∈ Ring)
51, 3, 4mp2b 10 . . 3 𝑌 ∈ Ring
6 zzngim.2 . . . 4 𝐿 = (ℤRHom‘𝑌)
76zrhrhm 21061 . . 3 (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌))
8 rhmghm 20262 . . 3 (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌))
95, 7, 8mp2b 10 . 2 𝐿 ∈ (ℤring GrpHom 𝑌)
10 eqid 2733 . . . 4 (Base‘𝑌) = (Base‘𝑌)
112, 10, 6znzrhfo 21103 . . . . . . 7 (0 ∈ ℕ0𝐿:ℤ–onto→(Base‘𝑌))
121, 11ax-mp 5 . . . . . 6 𝐿:ℤ–onto→(Base‘𝑌)
13 fofn 6808 . . . . . 6 (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿 Fn ℤ)
14 fnresdm 6670 . . . . . 6 (𝐿 Fn ℤ → (𝐿 ↾ ℤ) = 𝐿)
1512, 13, 14mp2b 10 . . . . 5 (𝐿 ↾ ℤ) = 𝐿
166reseq1i 5978 . . . . 5 (𝐿 ↾ ℤ) = ((ℤRHom‘𝑌) ↾ ℤ)
1715, 16eqtr3i 2763 . . . 4 𝐿 = ((ℤRHom‘𝑌) ↾ ℤ)
18 eqid 2733 . . . . . 6 0 = 0
1918iftruei 4536 . . . . 5 if(0 = 0, ℤ, (0..^0)) = ℤ
2019eqcomi 2742 . . . 4 ℤ = if(0 = 0, ℤ, (0..^0))
212, 10, 17, 20znf1o 21107 . . 3 (0 ∈ ℕ0𝐿:ℤ–1-1-onto→(Base‘𝑌))
221, 21ax-mp 5 . 2 𝐿:ℤ–1-1-onto→(Base‘𝑌)
23 zringbas 21023 . . 3 ℤ = (Base‘ℤring)
2423, 10isgim 19136 . 2 (𝐿 ∈ (ℤring GrpIso 𝑌) ↔ (𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝐿:ℤ–1-1-onto→(Base‘𝑌)))
259, 22, 24mpbir2an 710 1 𝐿 ∈ (ℤring GrpIso 𝑌)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wcel 2107  ifcif 4529  cres 5679   Fn wfn 6539  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  (class class class)co 7409  0cc0 11110  0cn0 12472  cz 12558  ..^cfzo 13627  Basecbs 17144   GrpHom cghm 19089   GrpIso cgim 19131  Ringcrg 20056  CRingccrg 20057   RingHom crh 20248  ringczring 21017  ℤRHomczrh 21049  ℤ/nczn 21052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-ec 8705  df-qs 8709  df-map 8822  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-seq 13967  df-dvds 16198  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-0g 17387  df-imas 17454  df-qus 17455  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-nsg 19004  df-eqg 19005  df-ghm 19090  df-gim 19133  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-cring 20059  df-oppr 20150  df-dvdsr 20171  df-rnghom 20251  df-subrg 20317  df-lmod 20473  df-lss 20543  df-lsp 20583  df-sra 20785  df-rgmod 20786  df-lidl 20787  df-rsp 20788  df-2idl 20857  df-cnfld 20945  df-zring 21018  df-zrh 21053  df-zn 21056
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator