![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zzngim | Structured version Visualization version GIF version |
Description: The ℤ ring homomorphism is an isomorphism for 𝑁 = 0. (We only show group isomorphism here, but ring isomorphism follows, since it is a bijective ring homomorphism.) (Contributed by Mario Carneiro, 21-Apr-2016.) (Revised by AV, 13-Jun-2019.) |
Ref | Expression |
---|---|
zzngim.y | ⊢ 𝑌 = (ℤ/nℤ‘0) |
zzngim.2 | ⊢ 𝐿 = (ℤRHom‘𝑌) |
Ref | Expression |
---|---|
zzngim | ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0nn0 12487 | . . . 4 ⊢ 0 ∈ ℕ0 | |
2 | zzngim.y | . . . . 5 ⊢ 𝑌 = (ℤ/nℤ‘0) | |
3 | 2 | zncrng 21100 | . . . 4 ⊢ (0 ∈ ℕ0 → 𝑌 ∈ CRing) |
4 | crngring 20068 | . . . 4 ⊢ (𝑌 ∈ CRing → 𝑌 ∈ Ring) | |
5 | 1, 3, 4 | mp2b 10 | . . 3 ⊢ 𝑌 ∈ Ring |
6 | zzngim.2 | . . . 4 ⊢ 𝐿 = (ℤRHom‘𝑌) | |
7 | 6 | zrhrhm 21061 | . . 3 ⊢ (𝑌 ∈ Ring → 𝐿 ∈ (ℤring RingHom 𝑌)) |
8 | rhmghm 20262 | . . 3 ⊢ (𝐿 ∈ (ℤring RingHom 𝑌) → 𝐿 ∈ (ℤring GrpHom 𝑌)) | |
9 | 5, 7, 8 | mp2b 10 | . 2 ⊢ 𝐿 ∈ (ℤring GrpHom 𝑌) |
10 | eqid 2733 | . . . 4 ⊢ (Base‘𝑌) = (Base‘𝑌) | |
11 | 2, 10, 6 | znzrhfo 21103 | . . . . . . 7 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–onto→(Base‘𝑌)) |
12 | 1, 11 | ax-mp 5 | . . . . . 6 ⊢ 𝐿:ℤ–onto→(Base‘𝑌) |
13 | fofn 6808 | . . . . . 6 ⊢ (𝐿:ℤ–onto→(Base‘𝑌) → 𝐿 Fn ℤ) | |
14 | fnresdm 6670 | . . . . . 6 ⊢ (𝐿 Fn ℤ → (𝐿 ↾ ℤ) = 𝐿) | |
15 | 12, 13, 14 | mp2b 10 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = 𝐿 |
16 | 6 | reseq1i 5978 | . . . . 5 ⊢ (𝐿 ↾ ℤ) = ((ℤRHom‘𝑌) ↾ ℤ) |
17 | 15, 16 | eqtr3i 2763 | . . . 4 ⊢ 𝐿 = ((ℤRHom‘𝑌) ↾ ℤ) |
18 | eqid 2733 | . . . . . 6 ⊢ 0 = 0 | |
19 | 18 | iftruei 4536 | . . . . 5 ⊢ if(0 = 0, ℤ, (0..^0)) = ℤ |
20 | 19 | eqcomi 2742 | . . . 4 ⊢ ℤ = if(0 = 0, ℤ, (0..^0)) |
21 | 2, 10, 17, 20 | znf1o 21107 | . . 3 ⊢ (0 ∈ ℕ0 → 𝐿:ℤ–1-1-onto→(Base‘𝑌)) |
22 | 1, 21 | ax-mp 5 | . 2 ⊢ 𝐿:ℤ–1-1-onto→(Base‘𝑌) |
23 | zringbas 21023 | . . 3 ⊢ ℤ = (Base‘ℤring) | |
24 | 23, 10 | isgim 19136 | . 2 ⊢ (𝐿 ∈ (ℤring GrpIso 𝑌) ↔ (𝐿 ∈ (ℤring GrpHom 𝑌) ∧ 𝐿:ℤ–1-1-onto→(Base‘𝑌))) |
25 | 9, 22, 24 | mpbir2an 710 | 1 ⊢ 𝐿 ∈ (ℤring GrpIso 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 ifcif 4529 ↾ cres 5679 Fn wfn 6539 –onto→wfo 6542 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 0cc0 11110 ℕ0cn0 12472 ℤcz 12558 ..^cfzo 13627 Basecbs 17144 GrpHom cghm 19089 GrpIso cgim 19131 Ringcrg 20056 CRingccrg 20057 RingHom crh 20248 ℤringczring 21017 ℤRHomczrh 21049 ℤ/nℤczn 21052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-pre-sup 11188 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-ec 8705 df-qs 8709 df-map 8822 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-sup 9437 df-inf 9438 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-fl 13757 df-mod 13835 df-seq 13967 df-dvds 16198 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-0g 17387 df-imas 17454 df-qus 17455 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-grp 18822 df-minusg 18823 df-sbg 18824 df-mulg 18951 df-subg 19003 df-nsg 19004 df-eqg 19005 df-ghm 19090 df-gim 19133 df-cmn 19650 df-abl 19651 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-oppr 20150 df-dvdsr 20171 df-rnghom 20251 df-subrg 20317 df-lmod 20473 df-lss 20543 df-lsp 20583 df-sra 20785 df-rgmod 20786 df-lidl 20787 df-rsp 20788 df-2idl 20857 df-cnfld 20945 df-zring 21018 df-zrh 21053 df-zn 21056 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |