![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 10512. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | β’ (π β πΉ:(cardβ(βͺ π΄ β π΅))β1-1-ontoβ(βͺ π΄ β π΅)) |
ttukeylem.2 | β’ (π β π΅ β π΄) |
ttukeylem.3 | β’ (π β βπ₯(π₯ β π΄ β (π« π₯ β© Fin) β π΄)) |
ttukeylem.4 | β’ πΊ = recs((π§ β V β¦ if(dom π§ = βͺ dom π§, if(dom π§ = β , π΅, βͺ ran π§), ((π§ββͺ dom π§) βͺ if(((π§ββͺ dom π§) βͺ {(πΉββͺ dom π§)}) β π΄, {(πΉββͺ dom π§)}, β ))))) |
Ref | Expression |
---|---|
ttukeylem4 | β’ (π β (πΊββ ) = π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6418 | . . 3 β’ β β On | |
2 | ttukeylem.1 | . . . 4 β’ (π β πΉ:(cardβ(βͺ π΄ β π΅))β1-1-ontoβ(βͺ π΄ β π΅)) | |
3 | ttukeylem.2 | . . . 4 β’ (π β π΅ β π΄) | |
4 | ttukeylem.3 | . . . 4 β’ (π β βπ₯(π₯ β π΄ β (π« π₯ β© Fin) β π΄)) | |
5 | ttukeylem.4 | . . . 4 β’ πΊ = recs((π§ β V β¦ if(dom π§ = βͺ dom π§, if(dom π§ = β , π΅, βͺ ran π§), ((π§ββͺ dom π§) βͺ if(((π§ββͺ dom π§) βͺ {(πΉββͺ dom π§)}) β π΄, {(πΉββͺ dom π§)}, β ))))) | |
6 | 2, 3, 4, 5 | ttukeylem3 10505 | . . 3 β’ ((π β§ β β On) β (πΊββ ) = if(β = βͺ β , if(β = β , π΅, βͺ (πΊ β β )), ((πΊββͺ β ) βͺ if(((πΊββͺ β ) βͺ {(πΉββͺ β )}) β π΄, {(πΉββͺ β )}, β )))) |
7 | 1, 6 | mpan2 689 | . 2 β’ (π β (πΊββ ) = if(β = βͺ β , if(β = β , π΅, βͺ (πΊ β β )), ((πΊββͺ β ) βͺ if(((πΊββͺ β ) βͺ {(πΉββͺ β )}) β π΄, {(πΉββͺ β )}, β )))) |
8 | uni0 4939 | . . . . 5 β’ βͺ β = β | |
9 | 8 | eqcomi 2741 | . . . 4 β’ β = βͺ β |
10 | 9 | iftruei 4535 | . . 3 β’ if(β = βͺ β , if(β = β , π΅, βͺ (πΊ β β )), ((πΊββͺ β ) βͺ if(((πΊββͺ β ) βͺ {(πΉββͺ β )}) β π΄, {(πΉββͺ β )}, β ))) = if(β = β , π΅, βͺ (πΊ β β )) |
11 | eqid 2732 | . . . 4 β’ β = β | |
12 | 11 | iftruei 4535 | . . 3 β’ if(β = β , π΅, βͺ (πΊ β β )) = π΅ |
13 | 10, 12 | eqtri 2760 | . 2 β’ if(β = βͺ β , if(β = β , π΅, βͺ (πΊ β β )), ((πΊββͺ β ) βͺ if(((πΊββͺ β ) βͺ {(πΉββͺ β )}) β π΄, {(πΉββͺ β )}, β ))) = π΅ |
14 | 7, 13 | eqtrdi 2788 | 1 β’ (π β (πΊββ ) = π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 βwal 1539 = wceq 1541 β wcel 2106 Vcvv 3474 β cdif 3945 βͺ cun 3946 β© cin 3947 β wss 3948 β c0 4322 ifcif 4528 π« cpw 4602 {csn 4628 βͺ cuni 4908 β¦ cmpt 5231 dom cdm 5676 ran crn 5677 β cima 5679 Oncon0 6364 β1-1-ontoβwf1o 6542 βcfv 6543 recscrecs 8369 Fincfn 8938 cardccrd 9929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 |
This theorem is referenced by: ttukeylem7 10509 |
Copyright terms: Public domain | W3C validator |