MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem4 Structured version   Visualization version   GIF version

Theorem ttukeylem4 10012
Description: Lemma for ttukey 10018. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem4 (𝜑 → (𝐺‘∅) = 𝐵)
Distinct variable groups:   𝑥,𝑧,𝐺   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem4
StepHypRef Expression
1 0elon 6225 . . 3 ∅ ∈ On
2 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
3 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
4 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
62, 3, 4, 5ttukeylem3 10011 . . 3 ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
71, 6mpan2 691 . 2 (𝜑 → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
8 uni0 4826 . . . . 5 ∅ = ∅
98eqcomi 2747 . . . 4 ∅ =
109iftruei 4421 . . 3 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = if(∅ = ∅, 𝐵, (𝐺 “ ∅))
11 eqid 2738 . . . 4 ∅ = ∅
1211iftruei 4421 . . 3 if(∅ = ∅, 𝐵, (𝐺 “ ∅)) = 𝐵
1310, 12eqtri 2761 . 2 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = 𝐵
147, 13eqtrdi 2789 1 (𝜑 → (𝐺‘∅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1540   = wceq 1542  wcel 2114  Vcvv 3398  cdif 3840  cun 3841  cin 3842  wss 3843  c0 4211  ifcif 4414  𝒫 cpw 4488  {csn 4516   cuni 4796  cmpt 5110  dom cdm 5525  ran crn 5526  cima 5528  Oncon0 6172  1-1-ontowf1o 6338  cfv 6339  recscrecs 8036  Fincfn 8555  cardccrd 9437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pr 5296  ax-un 7479
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-wrecs 7976  df-recs 8037
This theorem is referenced by:  ttukeylem7  10015
  Copyright terms: Public domain W3C validator