| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ttukey 10478. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
| ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
| ttukeylem.4 | ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) |
| Ref | Expression |
|---|---|
| ttukeylem4 | ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6390 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ttukeylem.1 | . . . 4 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
| 3 | ttukeylem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | ttukeylem.3 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
| 5 | ttukeylem.4 | . . . 4 ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) | |
| 6 | 2, 3, 4, 5 | ttukeylem3 10471 | . . 3 ⊢ ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝜑 → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
| 8 | uni0 4902 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 9 | 8 | eqcomi 2739 | . . . 4 ⊢ ∅ = ∪ ∅ |
| 10 | 9 | iftruei 4498 | . . 3 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) |
| 11 | eqid 2730 | . . . 4 ⊢ ∅ = ∅ | |
| 12 | 11 | iftruei 4498 | . . 3 ⊢ if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) = 𝐵 |
| 13 | 10, 12 | eqtri 2753 | . 2 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = 𝐵 |
| 14 | 7, 13 | eqtrdi 2781 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 ifcif 4491 𝒫 cpw 4566 {csn 4592 ∪ cuni 4874 ↦ cmpt 5191 dom cdm 5641 ran crn 5642 “ cima 5644 Oncon0 6335 –1-1-onto→wf1o 6513 ‘cfv 6514 recscrecs 8342 Fincfn 8921 cardccrd 9895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 |
| This theorem is referenced by: ttukeylem7 10475 |
| Copyright terms: Public domain | W3C validator |