MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem4 Structured version   Visualization version   GIF version

Theorem ttukeylem4 10465
Description: Lemma for ttukey 10471. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem4 (𝜑 → (𝐺‘∅) = 𝐵)
Distinct variable groups:   𝑥,𝑧,𝐺   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem4
StepHypRef Expression
1 0elon 6387 . . 3 ∅ ∈ On
2 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
3 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
4 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
62, 3, 4, 5ttukeylem3 10464 . . 3 ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
71, 6mpan2 691 . 2 (𝜑 → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
8 uni0 4899 . . . . 5 ∅ = ∅
98eqcomi 2738 . . . 4 ∅ =
109iftruei 4495 . . 3 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = if(∅ = ∅, 𝐵, (𝐺 “ ∅))
11 eqid 2729 . . . 4 ∅ = ∅
1211iftruei 4495 . . 3 if(∅ = ∅, 𝐵, (𝐺 “ ∅)) = 𝐵
1310, 12eqtri 2752 . 2 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = 𝐵
147, 13eqtrdi 2780 1 (𝜑 → (𝐺‘∅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538   = wceq 1540  wcel 2109  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  𝒫 cpw 4563  {csn 4589   cuni 4871  cmpt 5188  dom cdm 5638  ran crn 5639  cima 5641  Oncon0 6332  1-1-ontowf1o 6510  cfv 6511  recscrecs 8339  Fincfn 8918  cardccrd 9888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340
This theorem is referenced by:  ttukeylem7  10468
  Copyright terms: Public domain W3C validator