Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 10018. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
ttukeylem.4 | ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) |
Ref | Expression |
---|---|
ttukeylem4 | ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6225 | . . 3 ⊢ ∅ ∈ On | |
2 | ttukeylem.1 | . . . 4 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
3 | ttukeylem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | ttukeylem.3 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
5 | ttukeylem.4 | . . . 4 ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) | |
6 | 2, 3, 4, 5 | ttukeylem3 10011 | . . 3 ⊢ ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝜑 → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
8 | uni0 4826 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 8 | eqcomi 2747 | . . . 4 ⊢ ∅ = ∪ ∅ |
10 | 9 | iftruei 4421 | . . 3 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) |
11 | eqid 2738 | . . . 4 ⊢ ∅ = ∅ | |
12 | 11 | iftruei 4421 | . . 3 ⊢ if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) = 𝐵 |
13 | 10, 12 | eqtri 2761 | . 2 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = 𝐵 |
14 | 7, 13 | eqtrdi 2789 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1540 = wceq 1542 ∈ wcel 2114 Vcvv 3398 ∖ cdif 3840 ∪ cun 3841 ∩ cin 3842 ⊆ wss 3843 ∅c0 4211 ifcif 4414 𝒫 cpw 4488 {csn 4516 ∪ cuni 4796 ↦ cmpt 5110 dom cdm 5525 ran crn 5526 “ cima 5528 Oncon0 6172 –1-1-onto→wf1o 6338 ‘cfv 6339 recscrecs 8036 Fincfn 8555 cardccrd 9437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-wrecs 7976 df-recs 8037 |
This theorem is referenced by: ttukeylem7 10015 |
Copyright terms: Public domain | W3C validator |