MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem4 Structured version   Visualization version   GIF version

Theorem ttukeylem4 9923
Description: Lemma for ttukey 9929. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem4 (𝜑 → (𝐺‘∅) = 𝐵)
Distinct variable groups:   𝑥,𝑧,𝐺   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem4
StepHypRef Expression
1 0elon 6212 . . 3 ∅ ∈ On
2 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
3 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
4 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
62, 3, 4, 5ttukeylem3 9922 . . 3 ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
71, 6mpan2 690 . 2 (𝜑 → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
8 uni0 4828 . . . . 5 ∅ = ∅
98eqcomi 2807 . . . 4 ∅ =
109iftruei 4432 . . 3 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = if(∅ = ∅, 𝐵, (𝐺 “ ∅))
11 eqid 2798 . . . 4 ∅ = ∅
1211iftruei 4432 . . 3 if(∅ = ∅, 𝐵, (𝐺 “ ∅)) = 𝐵
1310, 12eqtri 2821 . 2 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = 𝐵
147, 13eqtrdi 2849 1 (𝜑 → (𝐺‘∅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wal 1536   = wceq 1538  wcel 2111  Vcvv 3441  cdif 3878  cun 3879  cin 3880  wss 3881  c0 4243  ifcif 4425  𝒫 cpw 4497  {csn 4525   cuni 4800  cmpt 5110  dom cdm 5519  ran crn 5520  cima 5522  Oncon0 6159  1-1-ontowf1o 6323  cfv 6324  recscrecs 7990  Fincfn 8492  cardccrd 9348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-wrecs 7930  df-recs 7991
This theorem is referenced by:  ttukeylem7  9926
  Copyright terms: Public domain W3C validator