![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 10587. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
ttukeylem.4 | ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) |
Ref | Expression |
---|---|
ttukeylem4 | ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6449 | . . 3 ⊢ ∅ ∈ On | |
2 | ttukeylem.1 | . . . 4 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
3 | ttukeylem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | ttukeylem.3 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
5 | ttukeylem.4 | . . . 4 ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) | |
6 | 2, 3, 4, 5 | ttukeylem3 10580 | . . 3 ⊢ ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
7 | 1, 6 | mpan2 690 | . 2 ⊢ (𝜑 → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
8 | uni0 4959 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 8 | eqcomi 2749 | . . . 4 ⊢ ∅ = ∪ ∅ |
10 | 9 | iftruei 4555 | . . 3 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) |
11 | eqid 2740 | . . . 4 ⊢ ∅ = ∅ | |
12 | 11 | iftruei 4555 | . . 3 ⊢ if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) = 𝐵 |
13 | 10, 12 | eqtri 2768 | . 2 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = 𝐵 |
14 | 7, 13 | eqtrdi 2796 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 ∩ cin 3975 ⊆ wss 3976 ∅c0 4352 ifcif 4548 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 dom cdm 5700 ran crn 5701 “ cima 5703 Oncon0 6395 –1-1-onto→wf1o 6572 ‘cfv 6573 recscrecs 8426 Fincfn 9003 cardccrd 10004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 |
This theorem is referenced by: ttukeylem7 10584 |
Copyright terms: Public domain | W3C validator |