![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version |
Description: Lemma for ttukey 10552. (Contributed by Mario Carneiro, 15-May-2015.) |
Ref | Expression |
---|---|
ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
ttukeylem.4 | ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) |
Ref | Expression |
---|---|
ttukeylem4 | ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elon 6422 | . . 3 ⊢ ∅ ∈ On | |
2 | ttukeylem.1 | . . . 4 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
3 | ttukeylem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
4 | ttukeylem.3 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
5 | ttukeylem.4 | . . . 4 ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) | |
6 | 2, 3, 4, 5 | ttukeylem3 10545 | . . 3 ⊢ ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
7 | 1, 6 | mpan2 689 | . 2 ⊢ (𝜑 → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
8 | uni0 4935 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
9 | 8 | eqcomi 2735 | . . . 4 ⊢ ∅ = ∪ ∅ |
10 | 9 | iftruei 4530 | . . 3 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) |
11 | eqid 2726 | . . . 4 ⊢ ∅ = ∅ | |
12 | 11 | iftruei 4530 | . . 3 ⊢ if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) = 𝐵 |
13 | 10, 12 | eqtri 2754 | . 2 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = 𝐵 |
14 | 7, 13 | eqtrdi 2782 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1532 = wceq 1534 ∈ wcel 2099 Vcvv 3462 ∖ cdif 3943 ∪ cun 3944 ∩ cin 3945 ⊆ wss 3946 ∅c0 4322 ifcif 4523 𝒫 cpw 4597 {csn 4623 ∪ cuni 4905 ↦ cmpt 5228 dom cdm 5674 ran crn 5675 “ cima 5677 Oncon0 6368 –1-1-onto→wf1o 6545 ‘cfv 6546 recscrecs 8392 Fincfn 8966 cardccrd 9971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-2nd 7996 df-frecs 8288 df-wrecs 8319 df-recs 8393 |
This theorem is referenced by: ttukeylem7 10549 |
Copyright terms: Public domain | W3C validator |