MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem4 Structured version   Visualization version   GIF version

Theorem ttukeylem4 10553
Description: Lemma for ttukey 10559. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
ttukeylem.2 (𝜑𝐵𝐴)
ttukeylem.3 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
ttukeylem.4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
Assertion
Ref Expression
ttukeylem4 (𝜑 → (𝐺‘∅) = 𝐵)
Distinct variable groups:   𝑥,𝑧,𝐺   𝜑,𝑧   𝑥,𝐴,𝑧   𝑥,𝐵,𝑧   𝑥,𝐹,𝑧
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem ttukeylem4
StepHypRef Expression
1 0elon 6437 . . 3 ∅ ∈ On
2 ttukeylem.1 . . . 4 (𝜑𝐹:(card‘( 𝐴𝐵))–1-1-onto→( 𝐴𝐵))
3 ttukeylem.2 . . . 4 (𝜑𝐵𝐴)
4 ttukeylem.3 . . . 4 (𝜑 → ∀𝑥(𝑥𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴))
5 ttukeylem.4 . . . 4 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ran 𝑧), ((𝑧 dom 𝑧) ∪ if(((𝑧 dom 𝑧) ∪ {(𝐹 dom 𝑧)}) ∈ 𝐴, {(𝐹 dom 𝑧)}, ∅)))))
62, 3, 4, 5ttukeylem3 10552 . . 3 ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
71, 6mpan2 691 . 2 (𝜑 → (𝐺‘∅) = if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))))
8 uni0 4934 . . . . 5 ∅ = ∅
98eqcomi 2745 . . . 4 ∅ =
109iftruei 4531 . . 3 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = if(∅ = ∅, 𝐵, (𝐺 “ ∅))
11 eqid 2736 . . . 4 ∅ = ∅
1211iftruei 4531 . . 3 if(∅ = ∅, 𝐵, (𝐺 “ ∅)) = 𝐵
1310, 12eqtri 2764 . 2 if(∅ = ∅, if(∅ = ∅, 𝐵, (𝐺 “ ∅)), ((𝐺 ∅) ∪ if(((𝐺 ∅) ∪ {(𝐹 ∅)}) ∈ 𝐴, {(𝐹 ∅)}, ∅))) = 𝐵
147, 13eqtrdi 2792 1 (𝜑 → (𝐺‘∅) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1537   = wceq 1539  wcel 2107  Vcvv 3479  cdif 3947  cun 3948  cin 3949  wss 3950  c0 4332  ifcif 4524  𝒫 cpw 4599  {csn 4625   cuni 4906  cmpt 5224  dom cdm 5684  ran crn 5685  cima 5687  Oncon0 6383  1-1-ontowf1o 6559  cfv 6560  recscrecs 8411  Fincfn 8986  cardccrd 9976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412
This theorem is referenced by:  ttukeylem7  10556
  Copyright terms: Public domain W3C validator