| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttukeylem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for ttukey 10471. (Contributed by Mario Carneiro, 15-May-2015.) |
| Ref | Expression |
|---|---|
| ttukeylem.1 | ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) |
| ttukeylem.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐴) |
| ttukeylem.3 | ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) |
| ttukeylem.4 | ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) |
| Ref | Expression |
|---|---|
| ttukeylem4 | ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0elon 6387 | . . 3 ⊢ ∅ ∈ On | |
| 2 | ttukeylem.1 | . . . 4 ⊢ (𝜑 → 𝐹:(card‘(∪ 𝐴 ∖ 𝐵))–1-1-onto→(∪ 𝐴 ∖ 𝐵)) | |
| 3 | ttukeylem.2 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝐴) | |
| 4 | ttukeylem.3 | . . . 4 ⊢ (𝜑 → ∀𝑥(𝑥 ∈ 𝐴 ↔ (𝒫 𝑥 ∩ Fin) ⊆ 𝐴)) | |
| 5 | ttukeylem.4 | . . . 4 ⊢ 𝐺 = recs((𝑧 ∈ V ↦ if(dom 𝑧 = ∪ dom 𝑧, if(dom 𝑧 = ∅, 𝐵, ∪ ran 𝑧), ((𝑧‘∪ dom 𝑧) ∪ if(((𝑧‘∪ dom 𝑧) ∪ {(𝐹‘∪ dom 𝑧)}) ∈ 𝐴, {(𝐹‘∪ dom 𝑧)}, ∅))))) | |
| 6 | 2, 3, 4, 5 | ttukeylem3 10464 | . . 3 ⊢ ((𝜑 ∧ ∅ ∈ On) → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
| 7 | 1, 6 | mpan2 691 | . 2 ⊢ (𝜑 → (𝐺‘∅) = if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅)))) |
| 8 | uni0 4899 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 9 | 8 | eqcomi 2738 | . . . 4 ⊢ ∅ = ∪ ∅ |
| 10 | 9 | iftruei 4495 | . . 3 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) |
| 11 | eqid 2729 | . . . 4 ⊢ ∅ = ∅ | |
| 12 | 11 | iftruei 4495 | . . 3 ⊢ if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)) = 𝐵 |
| 13 | 10, 12 | eqtri 2752 | . 2 ⊢ if(∅ = ∪ ∅, if(∅ = ∅, 𝐵, ∪ (𝐺 “ ∅)), ((𝐺‘∪ ∅) ∪ if(((𝐺‘∪ ∅) ∪ {(𝐹‘∪ ∅)}) ∈ 𝐴, {(𝐹‘∪ ∅)}, ∅))) = 𝐵 |
| 14 | 7, 13 | eqtrdi 2780 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 ∪ cun 3912 ∩ cin 3913 ⊆ wss 3914 ∅c0 4296 ifcif 4488 𝒫 cpw 4563 {csn 4589 ∪ cuni 4871 ↦ cmpt 5188 dom cdm 5638 ran crn 5639 “ cima 5641 Oncon0 6332 –1-1-onto→wf1o 6510 ‘cfv 6511 recscrecs 8339 Fincfn 8918 cardccrd 9888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 |
| This theorem is referenced by: ttukeylem7 10468 |
| Copyright terms: Public domain | W3C validator |