| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl 482 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin) | 
| 2 |  | simpr 484 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) | 
| 3 |  | crngring 20242 | . . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | 
| 4 |  | chp0mat.a | . . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 5 | 4 | matring 22449 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) | 
| 6 | 3, 5 | sylan2 593 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) | 
| 7 |  | eqid 2737 | . . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) | 
| 8 |  | chpidmat.i | . . . . 5
⊢ 𝐼 = (1r‘𝐴) | 
| 9 | 7, 8 | ringidcl 20262 | . . . 4
⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) | 
| 10 | 6, 9 | syl 17 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (Base‘𝐴)) | 
| 11 |  | chpidmat.1 | . . . . . . 7
⊢  1 =
(1r‘𝑅) | 
| 12 |  | eqid 2737 | . . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) | 
| 13 | 1 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑁 ∈ Fin) | 
| 14 | 3 | adantl 481 | . . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) | 
| 15 | 14 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑅 ∈ Ring) | 
| 16 |  | simplrl 777 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝑁) | 
| 17 |  | simplrr 778 | . . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝑁) | 
| 18 | 4, 11, 12, 13, 15, 16, 17, 8 | mat1ov 22454 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 ,
(0g‘𝑅))) | 
| 19 |  | ifnefalse 4537 | . . . . . . 7
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, 1 ,
(0g‘𝑅)) =
(0g‘𝑅)) | 
| 20 | 19 | adantl 481 | . . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, 1 ,
(0g‘𝑅)) =
(0g‘𝑅)) | 
| 21 | 18, 20 | eqtrd 2777 | . . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖𝐼𝑗) = (0g‘𝑅)) | 
| 22 | 21 | ex 412 | . . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) | 
| 23 | 22 | ralrimivva 3202 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) | 
| 24 |  | chp0mat.c | . . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) | 
| 25 |  | chp0mat.p | . . . 4
⊢ 𝑃 = (Poly1‘𝑅) | 
| 26 |  | chpidmat.s | . . . 4
⊢ 𝑆 = (algSc‘𝑃) | 
| 27 |  | chp0mat.x | . . . 4
⊢ 𝑋 = (var1‘𝑅) | 
| 28 |  | chp0mat.g | . . . 4
⊢ 𝐺 = (mulGrp‘𝑃) | 
| 29 |  | eqid 2737 | . . . 4
⊢
(-g‘𝑃) = (-g‘𝑃) | 
| 30 | 24, 25, 4, 26, 7, 27, 12, 28, 29 | chpdmat 22847 | . . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ (Base‘𝐴)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) → (𝐶‘𝐼) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))))) | 
| 31 | 1, 2, 10, 23, 30 | syl31anc 1375 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))))) | 
| 32 | 1 | adantr 480 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑁 ∈ Fin) | 
| 33 | 14 | adantr 480 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) | 
| 34 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) | 
| 35 | 4, 11, 12, 32, 33, 34, 34, 8 | mat1ov 22454 | . . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘𝐼𝑘) = if(𝑘 = 𝑘, 1 ,
(0g‘𝑅))) | 
| 36 |  | eqid 2737 | . . . . . . . . 9
⊢ 𝑘 = 𝑘 | 
| 37 | 36 | iftruei 4532 | . . . . . . . 8
⊢ if(𝑘 = 𝑘, 1 ,
(0g‘𝑅)) =
1 | 
| 38 | 35, 37 | eqtrdi 2793 | . . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘𝐼𝑘) = 1 ) | 
| 39 | 38 | fveq2d 6910 | . . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑆‘(𝑘𝐼𝑘)) = (𝑆‘ 1 )) | 
| 40 | 39 | oveq2d 7447 | . . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))) = (𝑋(-g‘𝑃)(𝑆‘ 1 ))) | 
| 41 | 40 | mpteq2dva 5242 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))) = (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) | 
| 42 | 41 | oveq2d 7447 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 ))))) | 
| 43 | 25 | ply1crng 22200 | . . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) | 
| 44 | 28 | crngmgp 20238 | . . . . . 6
⊢ (𝑃 ∈ CRing → 𝐺 ∈ CMnd) | 
| 45 |  | cmnmnd 19815 | . . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) | 
| 46 | 43, 44, 45 | 3syl 18 | . . . . 5
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) | 
| 47 | 46 | adantl 481 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd) | 
| 48 | 25 | ply1ring 22249 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) | 
| 49 |  | ringgrp 20235 | . . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) | 
| 50 | 48, 49 | syl 17 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Grp) | 
| 51 |  | eqid 2737 | . . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) | 
| 52 | 27, 25, 51 | vr1cl 22219 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) | 
| 53 |  | eqid 2737 | . . . . . . . . . . 11
⊢
(1r‘𝑃) = (1r‘𝑃) | 
| 54 | 25, 26, 11, 53 | ply1scl1 22296 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑆‘ 1 ) =
(1r‘𝑃)) | 
| 55 | 51, 53 | ringidcl 20262 | . . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ (Base‘𝑃)) | 
| 56 | 48, 55 | syl 17 | . . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑃)
∈ (Base‘𝑃)) | 
| 57 | 54, 56 | eqeltrd 2841 | . . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑆‘ 1 ) ∈ (Base‘𝑃)) | 
| 58 | 50, 52, 57 | 3jca 1129 | . . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) | 
| 59 | 3, 58 | syl 17 | . . . . . . 7
⊢ (𝑅 ∈ CRing → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) | 
| 60 | 59 | adantl 481 | . . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) | 
| 61 | 51, 29 | grpsubcl 19038 | . . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝑃)) | 
| 62 | 60, 61 | syl 17 | . . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝑃)) | 
| 63 | 28, 51 | mgpbas 20142 | . . . . 5
⊢
(Base‘𝑃) =
(Base‘𝐺) | 
| 64 | 62, 63 | eleqtrdi 2851 | . . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) | 
| 65 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) | 
| 66 |  | chp0mat.m | . . . . . 6
⊢  ↑ =
(.g‘𝐺) | 
| 67 | 65, 66 | gsumconst 19952 | . . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) →
(𝐺
Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) | 
| 68 |  | chpidmat.m | . . . . . . . 8
⊢  − =
(-g‘𝑃) | 
| 69 | 68 | eqcomi 2746 | . . . . . . 7
⊢
(-g‘𝑃) = − | 
| 70 | 69 | oveqi 7444 | . . . . . 6
⊢ (𝑋(-g‘𝑃)(𝑆‘ 1 )) = (𝑋 − (𝑆‘ 1 )) | 
| 71 | 70 | oveq2i 7442 | . . . . 5
⊢
((♯‘𝑁)
↑
(𝑋(-g‘𝑃)(𝑆‘ 1 ))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 ))) | 
| 72 | 67, 71 | eqtrdi 2793 | . . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) →
(𝐺
Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | 
| 73 | 47, 1, 64, 72 | syl3anc 1373 | . . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | 
| 74 | 42, 73 | eqtrd 2777 | . 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))))) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) | 
| 75 | 31, 74 | eqtrd 2777 | 1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) |