Step | Hyp | Ref
| Expression |
1 | | simpl 484 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π β Fin) |
2 | | simpr 486 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π
β CRing) |
3 | | crngring 19984 |
. . . . 5
β’ (π
β CRing β π
β Ring) |
4 | | chp0mat.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
5 | 4 | matring 21815 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
6 | 3, 5 | sylan2 594 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β π΄ β Ring) |
7 | | eqid 2733 |
. . . . 5
β’
(Baseβπ΄) =
(Baseβπ΄) |
8 | | chpidmat.i |
. . . . 5
β’ πΌ = (1rβπ΄) |
9 | 7, 8 | ringidcl 19997 |
. . . 4
β’ (π΄ β Ring β πΌ β (Baseβπ΄)) |
10 | 6, 9 | syl 17 |
. . 3
β’ ((π β Fin β§ π
β CRing) β πΌ β (Baseβπ΄)) |
11 | | chpidmat.1 |
. . . . . . 7
β’ 1 =
(1rβπ
) |
12 | | eqid 2733 |
. . . . . . 7
β’
(0gβπ
) = (0gβπ
) |
13 | 1 | ad2antrr 725 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β π β Fin) |
14 | 3 | adantl 483 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π
β Ring) |
15 | 14 | ad2antrr 725 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β π
β Ring) |
16 | | simplrl 776 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β π β π) |
17 | | simplrr 777 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β π β π) |
18 | 4, 11, 12, 13, 15, 16, 17, 8 | mat1ov 21820 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β (ππΌπ) = if(π = π, 1 ,
(0gβπ
))) |
19 | | ifnefalse 4502 |
. . . . . . 7
β’ (π β π β if(π = π, 1 ,
(0gβπ
)) =
(0gβπ
)) |
20 | 19 | adantl 483 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β if(π = π, 1 ,
(0gβπ
)) =
(0gβπ
)) |
21 | 18, 20 | eqtrd 2773 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ π β π) β (ππΌπ) = (0gβπ
)) |
22 | 21 | ex 414 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β (π β π β (ππΌπ) = (0gβπ
))) |
23 | 22 | ralrimivva 3194 |
. . 3
β’ ((π β Fin β§ π
β CRing) β
βπ β π βπ β π (π β π β (ππΌπ) = (0gβπ
))) |
24 | | chp0mat.c |
. . . 4
β’ πΆ = (π CharPlyMat π
) |
25 | | chp0mat.p |
. . . 4
β’ π = (Poly1βπ
) |
26 | | chpidmat.s |
. . . 4
β’ π = (algScβπ) |
27 | | chp0mat.x |
. . . 4
β’ π = (var1βπ
) |
28 | | chp0mat.g |
. . . 4
β’ πΊ = (mulGrpβπ) |
29 | | eqid 2733 |
. . . 4
β’
(-gβπ) = (-gβπ) |
30 | 24, 25, 4, 26, 7, 27, 12, 28, 29 | chpdmat 22213 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ πΌ β (Baseβπ΄)) β§ βπ β π βπ β π (π β π β (ππΌπ) = (0gβπ
))) β (πΆβπΌ) = (πΊ Ξ£g (π β π β¦ (π(-gβπ)(πβ(ππΌπ)))))) |
31 | 1, 2, 10, 23, 30 | syl31anc 1374 |
. 2
β’ ((π β Fin β§ π
β CRing) β (πΆβπΌ) = (πΊ Ξ£g (π β π β¦ (π(-gβπ)(πβ(ππΌπ)))))) |
32 | 1 | adantr 482 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β π β Fin) |
33 | 14 | adantr 482 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β π
β Ring) |
34 | | simpr 486 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β π β π) |
35 | 4, 11, 12, 32, 33, 34, 34, 8 | mat1ov 21820 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (ππΌπ) = if(π = π, 1 ,
(0gβπ
))) |
36 | | eqid 2733 |
. . . . . . . . 9
β’ π = π |
37 | 36 | iftruei 4497 |
. . . . . . . 8
β’ if(π = π, 1 ,
(0gβπ
)) =
1 |
38 | 35, 37 | eqtrdi 2789 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (ππΌπ) = 1 ) |
39 | 38 | fveq2d 6850 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (πβ(ππΌπ)) = (πβ 1 )) |
40 | 39 | oveq2d 7377 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π(-gβπ)(πβ(ππΌπ))) = (π(-gβπ)(πβ 1 ))) |
41 | 40 | mpteq2dva 5209 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β (π β π β¦ (π(-gβπ)(πβ(ππΌπ)))) = (π β π β¦ (π(-gβπ)(πβ 1 )))) |
42 | 41 | oveq2d 7377 |
. . 3
β’ ((π β Fin β§ π
β CRing) β (πΊ Ξ£g
(π β π β¦ (π(-gβπ)(πβ(ππΌπ))))) = (πΊ Ξ£g (π β π β¦ (π(-gβπ)(πβ 1 ))))) |
43 | 25 | ply1crng 21592 |
. . . . . 6
β’ (π
β CRing β π β CRing) |
44 | 28 | crngmgp 19980 |
. . . . . 6
β’ (π β CRing β πΊ β CMnd) |
45 | | cmnmnd 19587 |
. . . . . 6
β’ (πΊ β CMnd β πΊ β Mnd) |
46 | 43, 44, 45 | 3syl 18 |
. . . . 5
β’ (π
β CRing β πΊ β Mnd) |
47 | 46 | adantl 483 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β πΊ β Mnd) |
48 | 25 | ply1ring 21642 |
. . . . . . . . . 10
β’ (π
β Ring β π β Ring) |
49 | | ringgrp 19977 |
. . . . . . . . . 10
β’ (π β Ring β π β Grp) |
50 | 48, 49 | syl 17 |
. . . . . . . . 9
β’ (π
β Ring β π β Grp) |
51 | | eqid 2733 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
52 | 27, 25, 51 | vr1cl 21611 |
. . . . . . . . 9
β’ (π
β Ring β π β (Baseβπ)) |
53 | | eqid 2733 |
. . . . . . . . . . 11
β’
(1rβπ) = (1rβπ) |
54 | 25, 26, 11, 53 | ply1scl1 21686 |
. . . . . . . . . 10
β’ (π
β Ring β (πβ 1 ) =
(1rβπ)) |
55 | 51, 53 | ringidcl 19997 |
. . . . . . . . . . 11
β’ (π β Ring β
(1rβπ)
β (Baseβπ)) |
56 | 48, 55 | syl 17 |
. . . . . . . . . 10
β’ (π
β Ring β
(1rβπ)
β (Baseβπ)) |
57 | 54, 56 | eqeltrd 2834 |
. . . . . . . . 9
β’ (π
β Ring β (πβ 1 ) β (Baseβπ)) |
58 | 50, 52, 57 | 3jca 1129 |
. . . . . . . 8
β’ (π
β Ring β (π β Grp β§ π β (Baseβπ) β§ (πβ 1 ) β (Baseβπ))) |
59 | 3, 58 | syl 17 |
. . . . . . 7
β’ (π
β CRing β (π β Grp β§ π β (Baseβπ) β§ (πβ 1 ) β (Baseβπ))) |
60 | 59 | adantl 483 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β (π β Grp β§ π β (Baseβπ) β§ (πβ 1 ) β (Baseβπ))) |
61 | 51, 29 | grpsubcl 18835 |
. . . . . 6
β’ ((π β Grp β§ π β (Baseβπ) β§ (πβ 1 ) β (Baseβπ)) β (π(-gβπ)(πβ 1 )) β
(Baseβπ)) |
62 | 60, 61 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing) β (π(-gβπ)(πβ 1 )) β
(Baseβπ)) |
63 | 28, 51 | mgpbas 19910 |
. . . . 5
β’
(Baseβπ) =
(BaseβπΊ) |
64 | 62, 63 | eleqtrdi 2844 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β (π(-gβπ)(πβ 1 )) β
(BaseβπΊ)) |
65 | | eqid 2733 |
. . . . . 6
β’
(BaseβπΊ) =
(BaseβπΊ) |
66 | | chp0mat.m |
. . . . . 6
β’ β =
(.gβπΊ) |
67 | 65, 66 | gsumconst 19719 |
. . . . 5
β’ ((πΊ β Mnd β§ π β Fin β§ (π(-gβπ)(πβ 1 )) β
(BaseβπΊ)) β
(πΊ
Ξ£g (π β π β¦ (π(-gβπ)(πβ 1 )))) =
((β―βπ) β (π(-gβπ)(πβ 1 )))) |
68 | | chpidmat.m |
. . . . . . . 8
β’ β =
(-gβπ) |
69 | 68 | eqcomi 2742 |
. . . . . . 7
β’
(-gβπ) = β |
70 | 69 | oveqi 7374 |
. . . . . 6
β’ (π(-gβπ)(πβ 1 )) = (π β (πβ 1 )) |
71 | 70 | oveq2i 7372 |
. . . . 5
β’
((β―βπ)
β
(π(-gβπ)(πβ 1 ))) =
((β―βπ) β (π β (πβ 1 ))) |
72 | 67, 71 | eqtrdi 2789 |
. . . 4
β’ ((πΊ β Mnd β§ π β Fin β§ (π(-gβπ)(πβ 1 )) β
(BaseβπΊ)) β
(πΊ
Ξ£g (π β π β¦ (π(-gβπ)(πβ 1 )))) =
((β―βπ) β (π β (πβ 1 )))) |
73 | 47, 1, 64, 72 | syl3anc 1372 |
. . 3
β’ ((π β Fin β§ π
β CRing) β (πΊ Ξ£g
(π β π β¦ (π(-gβπ)(πβ 1 )))) =
((β―βπ) β (π β (πβ 1 )))) |
74 | 42, 73 | eqtrd 2773 |
. 2
β’ ((π β Fin β§ π
β CRing) β (πΊ Ξ£g
(π β π β¦ (π(-gβπ)(πβ(ππΌπ))))) = ((β―βπ) β (π β (πβ 1 )))) |
75 | 31, 74 | eqtrd 2773 |
1
β’ ((π β Fin β§ π
β CRing) β (πΆβπΌ) = ((β―βπ) β (π β (πβ 1 )))) |