| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin) |
| 2 | | simpr 484 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
| 3 | | crngring 20210 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 4 | | chp0mat.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 5 | 4 | matring 22386 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 6 | 3, 5 | sylan2 593 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 7 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 8 | | chpidmat.i |
. . . . 5
⊢ 𝐼 = (1r‘𝐴) |
| 9 | 7, 8 | ringidcl 20230 |
. . . 4
⊢ (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴)) |
| 10 | 6, 9 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (Base‘𝐴)) |
| 11 | | chpidmat.1 |
. . . . . . 7
⊢ 1 =
(1r‘𝑅) |
| 12 | | eqid 2736 |
. . . . . . 7
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 13 | 1 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑁 ∈ Fin) |
| 14 | 3 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 15 | 14 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑅 ∈ Ring) |
| 16 | | simplrl 776 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑖 ∈ 𝑁) |
| 17 | | simplrr 777 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → 𝑗 ∈ 𝑁) |
| 18 | 4, 11, 12, 13, 15, 16, 17, 8 | mat1ov 22391 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 ,
(0g‘𝑅))) |
| 19 | | ifnefalse 4517 |
. . . . . . 7
⊢ (𝑖 ≠ 𝑗 → if(𝑖 = 𝑗, 1 ,
(0g‘𝑅)) =
(0g‘𝑅)) |
| 20 | 19 | adantl 481 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → if(𝑖 = 𝑗, 1 ,
(0g‘𝑅)) =
(0g‘𝑅)) |
| 21 | 18, 20 | eqtrd 2771 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ 𝑖 ≠ 𝑗) → (𝑖𝐼𝑗) = (0g‘𝑅)) |
| 22 | 21 | ex 412 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) |
| 23 | 22 | ralrimivva 3188 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) |
| 24 | | chp0mat.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 25 | | chp0mat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 26 | | chpidmat.s |
. . . 4
⊢ 𝑆 = (algSc‘𝑃) |
| 27 | | chp0mat.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
| 28 | | chp0mat.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑃) |
| 29 | | eqid 2736 |
. . . 4
⊢
(-g‘𝑃) = (-g‘𝑃) |
| 30 | 24, 25, 4, 26, 7, 27, 12, 28, 29 | chpdmat 22784 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ (Base‘𝐴)) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝐼𝑗) = (0g‘𝑅))) → (𝐶‘𝐼) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))))) |
| 31 | 1, 2, 10, 23, 30 | syl31anc 1375 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))))) |
| 32 | 1 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑁 ∈ Fin) |
| 33 | 14 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 34 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 35 | 4, 11, 12, 32, 33, 34, 34, 8 | mat1ov 22391 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘𝐼𝑘) = if(𝑘 = 𝑘, 1 ,
(0g‘𝑅))) |
| 36 | | eqid 2736 |
. . . . . . . . 9
⊢ 𝑘 = 𝑘 |
| 37 | 36 | iftruei 4512 |
. . . . . . . 8
⊢ if(𝑘 = 𝑘, 1 ,
(0g‘𝑅)) =
1 |
| 38 | 35, 37 | eqtrdi 2787 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘𝐼𝑘) = 1 ) |
| 39 | 38 | fveq2d 6885 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑆‘(𝑘𝐼𝑘)) = (𝑆‘ 1 )) |
| 40 | 39 | oveq2d 7426 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))) = (𝑋(-g‘𝑃)(𝑆‘ 1 ))) |
| 41 | 40 | mpteq2dva 5219 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘)))) = (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) |
| 42 | 41 | oveq2d 7426 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 ))))) |
| 43 | 25 | ply1crng 22139 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 44 | 28 | crngmgp 20206 |
. . . . . 6
⊢ (𝑃 ∈ CRing → 𝐺 ∈ CMnd) |
| 45 | | cmnmnd 19783 |
. . . . . 6
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 46 | 43, 44, 45 | 3syl 18 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
| 47 | 46 | adantl 481 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd) |
| 48 | 25 | ply1ring 22188 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 49 | | ringgrp 20203 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Grp) |
| 51 | | eqid 2736 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 52 | 27, 25, 51 | vr1cl 22158 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 53 | | eqid 2736 |
. . . . . . . . . . 11
⊢
(1r‘𝑃) = (1r‘𝑃) |
| 54 | 25, 26, 11, 53 | ply1scl1 22235 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → (𝑆‘ 1 ) =
(1r‘𝑃)) |
| 55 | 51, 53 | ringidcl 20230 |
. . . . . . . . . . 11
⊢ (𝑃 ∈ Ring →
(1r‘𝑃)
∈ (Base‘𝑃)) |
| 56 | 48, 55 | syl 17 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring →
(1r‘𝑃)
∈ (Base‘𝑃)) |
| 57 | 54, 56 | eqeltrd 2835 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → (𝑆‘ 1 ) ∈ (Base‘𝑃)) |
| 58 | 50, 52, 57 | 3jca 1128 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) |
| 59 | 3, 58 | syl 17 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) |
| 60 | 59 | adantl 481 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃))) |
| 61 | 51, 29 | grpsubcl 19008 |
. . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆‘ 1 ) ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝑃)) |
| 62 | 60, 61 | syl 17 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝑃)) |
| 63 | 28, 51 | mgpbas 20110 |
. . . . 5
⊢
(Base‘𝑃) =
(Base‘𝐺) |
| 64 | 62, 63 | eleqtrdi 2845 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) |
| 65 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 66 | | chp0mat.m |
. . . . . 6
⊢ ↑ =
(.g‘𝐺) |
| 67 | 65, 66 | gsumconst 19920 |
. . . . 5
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) →
(𝐺
Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) |
| 68 | | chpidmat.m |
. . . . . . . 8
⊢ − =
(-g‘𝑃) |
| 69 | 68 | eqcomi 2745 |
. . . . . . 7
⊢
(-g‘𝑃) = − |
| 70 | 69 | oveqi 7423 |
. . . . . 6
⊢ (𝑋(-g‘𝑃)(𝑆‘ 1 )) = (𝑋 − (𝑆‘ 1 )) |
| 71 | 70 | oveq2i 7421 |
. . . . 5
⊢
((♯‘𝑁)
↑
(𝑋(-g‘𝑃)(𝑆‘ 1 ))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 ))) |
| 72 | 67, 71 | eqtrdi 2787 |
. . . 4
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g‘𝑃)(𝑆‘ 1 )) ∈
(Base‘𝐺)) →
(𝐺
Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) |
| 73 | 47, 1, 64, 72 | syl3anc 1373 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘ 1 )))) =
((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) |
| 74 | 42, 73 | eqtrd 2771 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)(𝑆‘(𝑘𝐼𝑘))))) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) |
| 75 | 31, 74 | eqtrd 2771 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘𝐼) = ((♯‘𝑁) ↑ (𝑋 − (𝑆‘ 1 )))) |