MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpidmat Structured version   Visualization version   GIF version

Theorem chpidmat 21548
Description: The characteristic polynomial of the identity matrix. (Contributed by AV, 19-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chpidmat.i 𝐼 = (1r𝐴)
chpidmat.s 𝑆 = (algSc‘𝑃)
chpidmat.1 1 = (1r𝑅)
chpidmat.m = (-g𝑃)
Assertion
Ref Expression
chpidmat ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶𝐼) = ((♯‘𝑁) (𝑋 (𝑆1 ))))

Proof of Theorem chpidmat
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 487 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin)
2 simpr 489 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
3 crngring 19378 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 chp0mat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
54matring 21144 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
63, 5sylan2 596 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
7 eqid 2759 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
8 chpidmat.i . . . . 5 𝐼 = (1r𝐴)
97, 8ringidcl 19390 . . . 4 (𝐴 ∈ Ring → 𝐼 ∈ (Base‘𝐴))
106, 9syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐼 ∈ (Base‘𝐴))
11 chpidmat.1 . . . . . . 7 1 = (1r𝑅)
12 eqid 2759 . . . . . . 7 (0g𝑅) = (0g𝑅)
131ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑁 ∈ Fin)
143adantl 486 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
1514ad2antrr 726 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑅 ∈ Ring)
16 simplrl 777 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑖𝑁)
17 simplrr 778 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → 𝑗𝑁)
184, 11, 12, 13, 15, 16, 17, 8mat1ov 21149 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝐼𝑗) = if(𝑖 = 𝑗, 1 , (0g𝑅)))
19 ifnefalse 4433 . . . . . . 7 (𝑖𝑗 → if(𝑖 = 𝑗, 1 , (0g𝑅)) = (0g𝑅))
2019adantl 486 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → if(𝑖 = 𝑗, 1 , (0g𝑅)) = (0g𝑅))
2118, 20eqtrd 2794 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ 𝑖𝑗) → (𝑖𝐼𝑗) = (0g𝑅))
2221ex 417 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖𝐼𝑗) = (0g𝑅)))
2322ralrimivva 3121 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝐼𝑗) = (0g𝑅)))
24 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
25 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
26 chpidmat.s . . . 4 𝑆 = (algSc‘𝑃)
27 chp0mat.x . . . 4 𝑋 = (var1𝑅)
28 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
29 eqid 2759 . . . 4 (-g𝑃) = (-g𝑃)
3024, 25, 4, 26, 7, 27, 12, 28, 29chpdmat 21542 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐼 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝐼𝑗) = (0g𝑅))) → (𝐶𝐼) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘))))))
311, 2, 10, 23, 30syl31anc 1371 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶𝐼) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘))))))
321adantr 485 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → 𝑁 ∈ Fin)
3314adantr 485 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → 𝑅 ∈ Ring)
34 simpr 489 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → 𝑘𝑁)
354, 11, 12, 32, 33, 34, 34, 8mat1ov 21149 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑘𝐼𝑘) = if(𝑘 = 𝑘, 1 , (0g𝑅)))
36 eqid 2759 . . . . . . . . 9 𝑘 = 𝑘
3736iftruei 4428 . . . . . . . 8 if(𝑘 = 𝑘, 1 , (0g𝑅)) = 1
3835, 37eqtrdi 2810 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑘𝐼𝑘) = 1 )
3938fveq2d 6663 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑆‘(𝑘𝐼𝑘)) = (𝑆1 ))
4039oveq2d 7167 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘))) = (𝑋(-g𝑃)(𝑆1 )))
4140mpteq2dva 5128 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘)))) = (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆1 ))))
4241oveq2d 7167 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘))))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆1 )))))
4325ply1crng 20923 . . . . . 6 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
4428crngmgp 19374 . . . . . 6 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
45 cmnmnd 18990 . . . . . 6 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
4643, 44, 453syl 18 . . . . 5 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
4746adantl 486 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd)
4825ply1ring 20973 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
49 ringgrp 19371 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
5048, 49syl 17 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Grp)
51 eqid 2759 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
5227, 25, 51vr1cl 20942 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
53 eqid 2759 . . . . . . . . . . 11 (1r𝑃) = (1r𝑃)
5425, 26, 11, 53ply1scl1 21017 . . . . . . . . . 10 (𝑅 ∈ Ring → (𝑆1 ) = (1r𝑃))
5551, 53ringidcl 19390 . . . . . . . . . . 11 (𝑃 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
5648, 55syl 17 . . . . . . . . . 10 (𝑅 ∈ Ring → (1r𝑃) ∈ (Base‘𝑃))
5754, 56eqeltrd 2853 . . . . . . . . 9 (𝑅 ∈ Ring → (𝑆1 ) ∈ (Base‘𝑃))
5850, 52, 573jca 1126 . . . . . . . 8 (𝑅 ∈ Ring → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆1 ) ∈ (Base‘𝑃)))
593, 58syl 17 . . . . . . 7 (𝑅 ∈ CRing → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆1 ) ∈ (Base‘𝑃)))
6059adantl 486 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆1 ) ∈ (Base‘𝑃)))
6151, 29grpsubcl 18247 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃) ∧ (𝑆1 ) ∈ (Base‘𝑃)) → (𝑋(-g𝑃)(𝑆1 )) ∈ (Base‘𝑃))
6260, 61syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g𝑃)(𝑆1 )) ∈ (Base‘𝑃))
6328, 51mgpbas 19314 . . . . 5 (Base‘𝑃) = (Base‘𝐺)
6462, 63eleqtrdi 2863 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑋(-g𝑃)(𝑆1 )) ∈ (Base‘𝐺))
65 eqid 2759 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
66 chp0mat.m . . . . . 6 = (.g𝐺)
6765, 66gsumconst 19123 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g𝑃)(𝑆1 )) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆1 )))) = ((♯‘𝑁) (𝑋(-g𝑃)(𝑆1 ))))
68 chpidmat.m . . . . . . . 8 = (-g𝑃)
6968eqcomi 2768 . . . . . . 7 (-g𝑃) =
7069oveqi 7164 . . . . . 6 (𝑋(-g𝑃)(𝑆1 )) = (𝑋 (𝑆1 ))
7170oveq2i 7162 . . . . 5 ((♯‘𝑁) (𝑋(-g𝑃)(𝑆1 ))) = ((♯‘𝑁) (𝑋 (𝑆1 )))
7267, 71eqtrdi 2810 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ (𝑋(-g𝑃)(𝑆1 )) ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆1 )))) = ((♯‘𝑁) (𝑋 (𝑆1 ))))
7347, 1, 64, 72syl3anc 1369 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆1 )))) = ((♯‘𝑁) (𝑋 (𝑆1 ))))
7442, 73eqtrd 2794 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)(𝑆‘(𝑘𝐼𝑘))))) = ((♯‘𝑁) (𝑋 (𝑆1 ))))
7531, 74eqtrd 2794 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶𝐼) = ((♯‘𝑁) (𝑋 (𝑆1 ))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400  w3a 1085   = wceq 1539  wcel 2112  wne 2952  wral 3071  ifcif 4421  cmpt 5113  cfv 6336  (class class class)co 7151  Fincfn 8528  chash 13741  Basecbs 16542  0gc0g 16772   Σg cgsu 16773  Mndcmnd 17978  Grpcgrp 18170  -gcsg 18172  .gcmg 18292  CMndccmn 18974  mulGrpcmgp 19308  1rcur 19320  Ringcrg 19366  CRingccrg 19367  algSccascl 20618  var1cv1 20901  Poly1cpl1 20902   Mat cmat 21108   CharPlyMat cchpmat 21527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653  ax-addf 10655  ax-mulf 10656
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-xor 1504  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-ot 4532  df-uni 4800  df-int 4840  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-se 5485  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-of 7406  df-ofr 7407  df-om 7581  df-1st 7694  df-2nd 7695  df-supp 7837  df-tpos 7903  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-2o 8114  df-er 8300  df-map 8419  df-pm 8420  df-ixp 8481  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fsupp 8868  df-sup 8940  df-oi 9008  df-card 9402  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-div 11337  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-xnn0 12008  df-z 12022  df-dec 12139  df-uz 12284  df-rp 12432  df-fz 12941  df-fzo 13084  df-seq 13420  df-exp 13481  df-hash 13742  df-word 13915  df-lsw 13963  df-concat 13971  df-s1 13998  df-substr 14051  df-pfx 14081  df-splice 14160  df-reverse 14169  df-s2 14258  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-mulr 16638  df-starv 16639  df-sca 16640  df-vsca 16641  df-ip 16642  df-tset 16643  df-ple 16644  df-ds 16646  df-unif 16647  df-hom 16648  df-cco 16649  df-0g 16774  df-gsum 16775  df-prds 16780  df-pws 16782  df-mre 16916  df-mrc 16917  df-acs 16919  df-mgm 17919  df-sgrp 17968  df-mnd 17979  df-mhm 18023  df-submnd 18024  df-efmnd 18101  df-grp 18173  df-minusg 18174  df-sbg 18175  df-mulg 18293  df-subg 18344  df-ghm 18424  df-gim 18467  df-cntz 18515  df-oppg 18542  df-symg 18564  df-pmtr 18638  df-psgn 18687  df-cmn 18976  df-abl 18977  df-mgp 19309  df-ur 19321  df-ring 19368  df-cring 19369  df-oppr 19445  df-dvdsr 19463  df-unit 19464  df-invr 19494  df-dvr 19505  df-rnghom 19539  df-drng 19573  df-subrg 19602  df-lmod 19705  df-lss 19773  df-sra 20013  df-rgmod 20014  df-cnfld 20168  df-zring 20240  df-zrh 20274  df-dsmm 20498  df-frlm 20513  df-ascl 20621  df-psr 20672  df-mvr 20673  df-mpl 20674  df-opsr 20676  df-psr1 20905  df-vr1 20906  df-ply1 20907  df-mamu 21087  df-mat 21109  df-mdet 21286  df-mat2pmat 21408  df-chpmat 21528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator