MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgs0 Structured version   Visualization version   GIF version

Theorem lgs0 26439
Description: The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgs0 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))

Proof of Theorem lgs0
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 0z 12313 . . 3 0 ∈ ℤ
2 eqid 2739 . . . 4 (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1))
32lgsval 26430 . . 3 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))))
41, 3mpan2 687 . 2 (𝐴 ∈ ℤ → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))))
5 eqid 2739 . . 3 0 = 0
65iftruei 4471 . 2 if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))) = if((𝐴↑2) = 1, 1, 0)
74, 6eqtrdi 2795 1 (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  ifcif 4464  {cpr 4568   class class class wbr 5078  cmpt 5161  cfv 6430  (class class class)co 7268  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860   < clt 10993  cmin 11188  -cneg 11189   / cdiv 11615  cn 11956  2c2 12011  7c7 12016  8c8 12017  cz 12302   mod cmo 13570  seqcseq 13702  cexp 13763  abscabs 14926  cdvds 15944  cprime 16357   pCnt cpc 16518   /L clgs 26423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-i2m1 10923  ax-rnegex 10926  ax-cnre 10928
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-seq 13703  df-lgs 26424
This theorem is referenced by:  lgsdir  26461  lgsne0  26464  lgsdinn0  26474
  Copyright terms: Public domain W3C validator