| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lgs0 | Structured version Visualization version GIF version | ||
| Description: The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| Ref | Expression |
|---|---|
| lgs0 | ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12500 | . . 3 ⊢ 0 ∈ ℤ | |
| 2 | eqid 2729 | . . . 4 ⊢ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)) | |
| 3 | 2 | lgsval 27228 | . . 3 ⊢ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0))))) |
| 4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0))))) |
| 5 | eqid 2729 | . . 3 ⊢ 0 = 0 | |
| 6 | 5 | iftruei 4485 | . 2 ⊢ if(0 = 0, if((𝐴↑2) = 1, 1, 0), (if((0 < 0 ∧ 𝐴 < 0), -1, 1) · (seq1( · , (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (if(𝑛 = 2, if(2 ∥ 𝐴, 0, if((𝐴 mod 8) ∈ {1, 7}, 1, -1)), ((((𝐴↑((𝑛 − 1) / 2)) + 1) mod 𝑛) − 1))↑(𝑛 pCnt 0)), 1)))‘(abs‘0)))) = if((𝐴↑2) = 1, 1, 0) |
| 7 | 4, 6 | eqtrdi 2780 | 1 ⊢ (𝐴 ∈ ℤ → (𝐴 /L 0) = if((𝐴↑2) = 1, 1, 0)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 {cpr 4581 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 + caddc 11031 · cmul 11033 < clt 11168 − cmin 11365 -cneg 11366 / cdiv 11795 ℕcn 12146 2c2 12201 7c7 12206 8c8 12207 ℤcz 12489 mod cmo 13791 seqcseq 13926 ↑cexp 13986 abscabs 15159 ∥ cdvds 16181 ℙcprime 16600 pCnt cpc 16766 /L clgs 27221 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-i2m1 11096 ax-rnegex 11099 ax-cnre 11101 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-seq 13927 df-lgs 27222 |
| This theorem is referenced by: lgsdir 27259 lgsne0 27262 lgsdinn0 27272 |
| Copyright terms: Public domain | W3C validator |