![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg0.o | ⊢ 0 = (0g‘𝐺) |
mulg0.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12576 | . 2 ⊢ 0 ∈ ℤ | |
2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | eqid 2731 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | eqid 2731 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 18997 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
9 | eqid 2731 | . . . 4 ⊢ 0 = 0 | |
10 | 9 | iftruei 4535 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
11 | 8, 10 | eqtrdi 2787 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
12 | 1, 11 | mpan 687 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ifcif 4528 {csn 4628 class class class wbr 5148 × cxp 5674 ‘cfv 6543 (class class class)co 7412 0cc0 11116 1c1 11117 < clt 11255 -cneg 11452 ℕcn 12219 ℤcz 12565 seqcseq 13973 Basecbs 17151 +gcplusg 17204 0gc0g 17392 invgcminusg 18862 .gcmg 18993 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 df-seq 13974 df-mulg 18994 |
This theorem is referenced by: mulgnn0gsum 19003 mulgnn0p1 19008 mulgnn0subcl 19010 mulgneg 19015 mulgaddcom 19021 mulginvcom 19022 mulgnn0z 19024 mulgnn0dir 19027 mulgneg2 19031 mulgnn0ass 19033 mhmmulg 19038 submmulg 19041 cycsubm 19124 odid 19454 oddvdsnn0 19460 oddvds 19463 odf1 19478 gexid 19497 mulgnn0di 19741 0cyg 19809 gsumconst 19850 srgmulgass 20118 srgpcomp 20119 srgbinomlem3 20129 srgbinomlem4 20130 srgbinom 20132 mulgass2 20204 lmodvsmmulgdi 20739 cnfldmulg 21266 cnfldexp 21267 assamulgscmlem1 21763 mplcoe3 21904 mplcoe5 21906 mplbas2 21908 psrbagev1 21949 psrbagev1OLD 21950 evlslem3 21954 evlslem1 21956 mhppwdeg 22002 ply1scltm 22123 chfacfscmulgsum 22682 chfacfpmmulgsum 22686 cpmadugsumlemF 22698 tmdmulg 23916 clmmulg 24948 dchrptlem2 27111 xrsmulgzz 32612 ressmulgnn0 32618 omndmul2 32666 omndmul 32668 archirng 32770 archirngz 32771 archiabllem1b 32774 archiabllem2c 32777 freshmansdream 32817 evlsvvvallem 41596 evlsvvval 41598 selvvvval 41620 evlselv 41622 mhphflem 41631 mhphf 41632 lmodvsmdi 47221 |
Copyright terms: Public domain | W3C validator |