| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg0.o | ⊢ 0 = (0g‘𝐺) |
| mulg0.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12485 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2731 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | eqid 2731 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | eqid 2731 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 18990 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
| 9 | eqid 2731 | . . . 4 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4481 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
| 11 | 8, 10 | eqtrdi 2782 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ifcif 4474 {csn 4575 class class class wbr 5093 × cxp 5617 ‘cfv 6487 (class class class)co 7352 0cc0 11012 1c1 11013 < clt 11152 -cneg 11351 ℕcn 12131 ℤcz 12474 seqcseq 13914 Basecbs 17126 +gcplusg 17167 0gc0g 17349 invgcminusg 18853 .gcmg 18986 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-n0 12388 df-z 12475 df-uz 12739 df-seq 13915 df-mulg 18987 |
| This theorem is referenced by: ressmulgnn0 18996 mulgnn0gsum 18999 mulgnn0p1 19004 mulgnn0subcl 19006 mulgneg 19011 mulgaddcom 19017 mulginvcom 19018 mulgnn0z 19020 mulgnn0dir 19023 mulgneg2 19027 mulgnn0ass 19029 mhmmulg 19034 submmulg 19037 cycsubm 19120 odid 19456 oddvdsnn0 19462 oddvds 19465 odf1 19480 gexid 19499 mulgnn0di 19743 0cyg 19811 gsumconst 19852 omndmul2 20051 omndmul 20053 srgmulgass 20141 srgpcomp 20142 srgbinomlem3 20152 srgbinomlem4 20153 srgbinom 20155 mulgass2 20233 lmodvsmmulgdi 20836 cnfldmulg 21346 cnfldexp 21347 freshmansdream 21517 assamulgscmlem1 21842 mplcoe3 21979 mplcoe5 21981 mplbas2 21983 psrbagev1 22018 evlslem3 22021 evlslem1 22023 mhppwdeg 22071 psdpw 22091 ply1scltm 22201 ply1idvr1 22215 chfacfscmulgsum 22781 chfacfpmmulgsum 22785 cpmadugsumlemF 22797 tmdmulg 24013 clmmulg 25034 dchrptlem2 27209 xrsmulgzz 32997 ressmulgnn0d 33032 archirng 33164 archirngz 33165 archiabllem1b 33168 archiabllem2c 33171 elrgspnlem1 33216 elrgspnlem2 33217 elrgspnlem3 33218 elrgspnlem4 33219 elrgspn 33220 elrgspnsubrunlem1 33221 elrgspnsubrunlem2 33222 rprmdvdspow 33505 evl1deg1 33546 evl1deg2 33547 evl1deg3 33548 aks6d1c1p6 42213 idomnnzpownz 42231 aks6d1c5lem2 42237 deg1pow 42240 aks6d1c6isolem1 42273 aks6d1c6lem5 42276 domnexpgn0cl 42622 abvexp 42631 evlsvvvallem 42660 evlsvvval 42662 selvvvval 42684 evlselv 42686 mhphflem 42695 mhphf 42696 lmodvsmdi 48484 |
| Copyright terms: Public domain | W3C validator |