| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg0.o | ⊢ 0 = (0g‘𝐺) |
| mulg0.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12540 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | eqid 2729 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 19003 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
| 9 | eqid 2729 | . . . 4 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4495 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
| 11 | 8, 10 | eqtrdi 2780 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4488 {csn 4589 class class class wbr 5107 × cxp 5636 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 < clt 11208 -cneg 11406 ℕcn 12186 ℤcz 12529 seqcseq 13966 Basecbs 17179 +gcplusg 17220 0gc0g 17402 invgcminusg 18866 .gcmg 18999 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-mulg 19000 |
| This theorem is referenced by: ressmulgnn0 19009 mulgnn0gsum 19012 mulgnn0p1 19017 mulgnn0subcl 19019 mulgneg 19024 mulgaddcom 19030 mulginvcom 19031 mulgnn0z 19033 mulgnn0dir 19036 mulgneg2 19040 mulgnn0ass 19042 mhmmulg 19047 submmulg 19050 cycsubm 19134 odid 19468 oddvdsnn0 19474 oddvds 19477 odf1 19492 gexid 19511 mulgnn0di 19755 0cyg 19823 gsumconst 19864 srgmulgass 20126 srgpcomp 20127 srgbinomlem3 20137 srgbinomlem4 20138 srgbinom 20140 mulgass2 20218 lmodvsmmulgdi 20803 cnfldmulg 21315 cnfldexp 21316 freshmansdream 21484 assamulgscmlem1 21808 mplcoe3 21945 mplcoe5 21947 mplbas2 21949 psrbagev1 21984 evlslem3 21987 evlslem1 21989 mhppwdeg 22037 psdpw 22057 ply1scltm 22167 ply1idvr1 22181 chfacfscmulgsum 22747 chfacfpmmulgsum 22751 cpmadugsumlemF 22763 tmdmulg 23979 clmmulg 25001 dchrptlem2 27176 xrsmulgzz 32947 ressmulgnn0d 32985 omndmul2 33026 omndmul 33028 archirng 33142 archirngz 33143 archiabllem1b 33146 archiabllem2c 33149 elrgspnlem1 33193 elrgspnlem2 33194 elrgspnlem3 33195 elrgspnlem4 33196 elrgspn 33197 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 rprmdvdspow 33504 evl1deg1 33545 evl1deg2 33546 evl1deg3 33547 aks6d1c1p6 42102 idomnnzpownz 42120 aks6d1c5lem2 42126 deg1pow 42129 aks6d1c6isolem1 42162 aks6d1c6lem5 42165 domnexpgn0cl 42511 abvexp 42520 evlsvvvallem 42549 evlsvvval 42551 selvvvval 42573 evlselv 42575 mhphflem 42584 mhphf 42585 lmodvsmdi 48367 |
| Copyright terms: Public domain | W3C validator |