![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg0.o | ⊢ 0 = (0g‘𝐺) |
mulg0.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12650 | . 2 ⊢ 0 ∈ ℤ | |
2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2740 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | eqid 2740 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | eqid 2740 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 19111 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
9 | eqid 2740 | . . . 4 ⊢ 0 = 0 | |
10 | 9 | iftruei 4555 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
11 | 8, 10 | eqtrdi 2796 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
12 | 1, 11 | mpan 689 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ifcif 4548 {csn 4648 class class class wbr 5166 × cxp 5698 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 < clt 11324 -cneg 11521 ℕcn 12293 ℤcz 12639 seqcseq 14052 Basecbs 17258 +gcplusg 17311 0gc0g 17499 invgcminusg 18974 .gcmg 19107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-seq 14053 df-mulg 19108 |
This theorem is referenced by: ressmulgnn0 19117 mulgnn0gsum 19120 mulgnn0p1 19125 mulgnn0subcl 19127 mulgneg 19132 mulgaddcom 19138 mulginvcom 19139 mulgnn0z 19141 mulgnn0dir 19144 mulgneg2 19148 mulgnn0ass 19150 mhmmulg 19155 submmulg 19158 cycsubm 19242 odid 19580 oddvdsnn0 19586 oddvds 19589 odf1 19604 gexid 19623 mulgnn0di 19867 0cyg 19935 gsumconst 19976 srgmulgass 20244 srgpcomp 20245 srgbinomlem3 20255 srgbinomlem4 20256 srgbinom 20258 mulgass2 20332 lmodvsmmulgdi 20917 cnfldmulg 21439 cnfldexp 21440 freshmansdream 21616 assamulgscmlem1 21942 mplcoe3 22079 mplcoe5 22081 mplbas2 22083 psrbagev1 22124 evlslem3 22127 evlslem1 22129 mhppwdeg 22177 ply1scltm 22305 ply1idvr1 22319 chfacfscmulgsum 22887 chfacfpmmulgsum 22891 cpmadugsumlemF 22903 tmdmulg 24121 clmmulg 25153 dchrptlem2 27327 xrsmulgzz 32992 omndmul2 33062 omndmul 33064 archirng 33168 archirngz 33169 archiabllem1b 33172 archiabllem2c 33175 rprmdvdspow 33526 evl1deg1 33566 evl1deg2 33567 evl1deg3 33568 aks6d1c1p6 42071 idomnnzpownz 42089 aks6d1c5lem2 42095 deg1pow 42098 aks6d1c6isolem1 42131 aks6d1c6lem5 42134 domnexpgn0cl 42478 abvexp 42487 evlsvvvallem 42516 evlsvvval 42518 selvvvval 42540 evlselv 42542 mhphflem 42551 mhphf 42552 lmodvsmdi 48107 |
Copyright terms: Public domain | W3C validator |