![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
mulg0.o | ⊢ 0 = (0g‘𝐺) |
mulg0.t | ⊢ · = (.g‘𝐺) |
Ref | Expression |
---|---|
mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 11676 | . 2 ⊢ 0 ∈ ℤ | |
2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
3 | eqid 2800 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
5 | eqid 2800 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
7 | eqid 2800 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 17858 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
9 | eqid 2800 | . . . 4 ⊢ 0 = 0 | |
10 | 9 | iftruei 4285 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
11 | 8, 10 | syl6eq 2850 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
12 | 1, 11 | mpan 682 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ifcif 4278 {csn 4369 class class class wbr 4844 × cxp 5311 ‘cfv 6102 (class class class)co 6879 0cc0 10225 1c1 10226 < clt 10364 -cneg 10558 ℕcn 11313 ℤcz 11665 seqcseq 13054 Basecbs 16183 +gcplusg 16266 0gc0g 16414 invgcminusg 17738 .gcmg 17855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-addrcl 10286 ax-rnegex 10296 ax-cnre 10298 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-neg 10560 df-z 11666 df-seq 13055 df-mulg 17856 |
This theorem is referenced by: mulgnn0p1 17867 mulgnn0subcl 17869 mulgneg 17874 mulgaddcom 17878 mulginvcom 17879 mulgnn0z 17881 mulgnn0dir 17884 mulgneg2 17888 mulgnn0ass 17890 mhmmulg 17895 submmulg 17898 odid 18269 oddvdsnn0 18275 oddvds 18278 odf1 18291 gexid 18308 mulgnn0di 18545 0cyg 18608 gsumconst 18648 srgmulgass 18846 srgpcomp 18847 srgbinomlem3 18857 srgbinomlem4 18858 srgbinom 18860 mulgass2 18916 lmodvsmmulgdi 19215 assamulgscmlem1 19670 mplcoe3 19788 mplcoe5 19790 mplbas2 19792 psrbagev1 19831 evlslem3 19835 evlslem1 19836 ply1scltm 19972 cnfldmulg 20099 cnfldexp 20100 chfacfscmulgsum 20992 chfacfpmmulgsum 20996 cpmadugsumlemF 21008 tmdmulg 22223 clmmulg 23227 dchrptlem2 25341 xrsmulgzz 30193 ressmulgnn0 30199 omndmul2 30227 omndmul 30229 archirng 30257 archirngz 30258 archiabllem1b 30261 archiabllem2c 30264 lmodvsmdi 42957 |
Copyright terms: Public domain | W3C validator |