| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg0.o | ⊢ 0 = (0g‘𝐺) |
| mulg0.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12546 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2730 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | eqid 2730 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | eqid 2730 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 19009 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
| 9 | eqid 2730 | . . . 4 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4497 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
| 11 | 8, 10 | eqtrdi 2781 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4490 {csn 4591 class class class wbr 5109 × cxp 5638 ‘cfv 6513 (class class class)co 7389 0cc0 11074 1c1 11075 < clt 11214 -cneg 11412 ℕcn 12187 ℤcz 12535 seqcseq 13972 Basecbs 17185 +gcplusg 17226 0gc0g 17408 invgcminusg 18872 .gcmg 19005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-n0 12449 df-z 12536 df-uz 12800 df-seq 13973 df-mulg 19006 |
| This theorem is referenced by: ressmulgnn0 19015 mulgnn0gsum 19018 mulgnn0p1 19023 mulgnn0subcl 19025 mulgneg 19030 mulgaddcom 19036 mulginvcom 19037 mulgnn0z 19039 mulgnn0dir 19042 mulgneg2 19046 mulgnn0ass 19048 mhmmulg 19053 submmulg 19056 cycsubm 19140 odid 19474 oddvdsnn0 19480 oddvds 19483 odf1 19498 gexid 19517 mulgnn0di 19761 0cyg 19829 gsumconst 19870 srgmulgass 20132 srgpcomp 20133 srgbinomlem3 20143 srgbinomlem4 20144 srgbinom 20146 mulgass2 20224 lmodvsmmulgdi 20809 cnfldmulg 21321 cnfldexp 21322 freshmansdream 21490 assamulgscmlem1 21814 mplcoe3 21951 mplcoe5 21953 mplbas2 21955 psrbagev1 21990 evlslem3 21993 evlslem1 21995 mhppwdeg 22043 psdpw 22063 ply1scltm 22173 ply1idvr1 22187 chfacfscmulgsum 22753 chfacfpmmulgsum 22757 cpmadugsumlemF 22769 tmdmulg 23985 clmmulg 25007 dchrptlem2 27182 xrsmulgzz 32953 ressmulgnn0d 32991 omndmul2 33032 omndmul 33034 archirng 33148 archirngz 33149 archiabllem1b 33152 archiabllem2c 33155 elrgspnlem1 33199 elrgspnlem2 33200 elrgspnlem3 33201 elrgspnlem4 33202 elrgspn 33203 elrgspnsubrunlem1 33204 elrgspnsubrunlem2 33205 rprmdvdspow 33510 evl1deg1 33551 evl1deg2 33552 evl1deg3 33553 aks6d1c1p6 42097 idomnnzpownz 42115 aks6d1c5lem2 42121 deg1pow 42124 aks6d1c6isolem1 42157 aks6d1c6lem5 42160 domnexpgn0cl 42504 abvexp 42513 evlsvvvallem 42542 evlsvvval 42544 selvvvval 42566 evlselv 42568 mhphflem 42577 mhphf 42578 lmodvsmdi 48357 |
| Copyright terms: Public domain | W3C validator |