![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | โข ๐ต = (Baseโ๐บ) |
mulg0.o | โข 0 = (0gโ๐บ) |
mulg0.t | โข ยท = (.gโ๐บ) |
Ref | Expression |
---|---|
mulg0 | โข (๐ โ ๐ต โ (0 ยท ๐) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12565 | . 2 โข 0 โ โค | |
2 | mulg0.b | . . . 4 โข ๐ต = (Baseโ๐บ) | |
3 | eqid 2732 | . . . 4 โข (+gโ๐บ) = (+gโ๐บ) | |
4 | mulg0.o | . . . 4 โข 0 = (0gโ๐บ) | |
5 | eqid 2732 | . . . 4 โข (invgโ๐บ) = (invgโ๐บ) | |
6 | mulg0.t | . . . 4 โข ยท = (.gโ๐บ) | |
7 | eqid 2732 | . . . 4 โข seq1((+gโ๐บ), (โ ร {๐})) = seq1((+gโ๐บ), (โ ร {๐})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 18948 | . . 3 โข ((0 โ โค โง ๐ โ ๐ต) โ (0 ยท ๐) = if(0 = 0, 0 , if(0 < 0, (seq1((+gโ๐บ), (โ ร {๐}))โ0), ((invgโ๐บ)โ(seq1((+gโ๐บ), (โ ร {๐}))โ-0))))) |
9 | eqid 2732 | . . . 4 โข 0 = 0 | |
10 | 9 | iftruei 4534 | . . 3 โข if(0 = 0, 0 , if(0 < 0, (seq1((+gโ๐บ), (โ ร {๐}))โ0), ((invgโ๐บ)โ(seq1((+gโ๐บ), (โ ร {๐}))โ-0)))) = 0 |
11 | 8, 10 | eqtrdi 2788 | . 2 โข ((0 โ โค โง ๐ โ ๐ต) โ (0 ยท ๐) = 0 ) |
12 | 1, 11 | mpan 688 | 1 โข (๐ โ ๐ต โ (0 ยท ๐) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 = wceq 1541 โ wcel 2106 ifcif 4527 {csn 4627 class class class wbr 5147 ร cxp 5673 โcfv 6540 (class class class)co 7405 0cc0 11106 1c1 11107 < clt 11244 -cneg 11441 โcn 12208 โคcz 12554 seqcseq 13962 Basecbs 17140 +gcplusg 17193 0gc0g 17381 invgcminusg 18816 .gcmg 18944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-seq 13963 df-mulg 18945 |
This theorem is referenced by: mulgnn0gsum 18954 mulgnn0p1 18959 mulgnn0subcl 18961 mulgneg 18966 mulgaddcom 18972 mulginvcom 18973 mulgnn0z 18975 mulgnn0dir 18978 mulgneg2 18982 mulgnn0ass 18984 mhmmulg 18989 submmulg 18992 cycsubm 19073 odid 19400 oddvdsnn0 19406 oddvds 19409 odf1 19424 gexid 19443 mulgnn0di 19687 0cyg 19755 gsumconst 19796 srgmulgass 20033 srgpcomp 20034 srgbinomlem3 20044 srgbinomlem4 20045 srgbinom 20047 mulgass2 20114 lmodvsmmulgdi 20499 cnfldmulg 20969 cnfldexp 20970 assamulgscmlem1 21444 mplcoe3 21584 mplcoe5 21586 mplbas2 21588 psrbagev1 21629 psrbagev1OLD 21630 evlslem3 21634 evlslem1 21636 mhppwdeg 21684 ply1scltm 21794 chfacfscmulgsum 22353 chfacfpmmulgsum 22357 cpmadugsumlemF 22369 tmdmulg 23587 clmmulg 24608 dchrptlem2 26757 xrsmulgzz 32166 ressmulgnn0 32172 omndmul2 32217 omndmul 32219 archirng 32321 archirngz 32322 archiabllem1b 32325 archiabllem2c 32328 freshmansdream 32369 evlsvvvallem 41130 evlsvvval 41132 selvvvval 41154 evlselv 41156 mhphflem 41165 mhphf 41166 lmodvsmdi 47011 |
Copyright terms: Public domain | W3C validator |