![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version |
Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
Ref | Expression |
---|---|
mulg0.b | โข ๐ต = (Baseโ๐บ) |
mulg0.o | โข 0 = (0gโ๐บ) |
mulg0.t | โข ยท = (.gโ๐บ) |
Ref | Expression |
---|---|
mulg0 | โข (๐ โ ๐ต โ (0 ยท ๐) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 12599 | . 2 โข 0 โ โค | |
2 | mulg0.b | . . . 4 โข ๐ต = (Baseโ๐บ) | |
3 | eqid 2728 | . . . 4 โข (+gโ๐บ) = (+gโ๐บ) | |
4 | mulg0.o | . . . 4 โข 0 = (0gโ๐บ) | |
5 | eqid 2728 | . . . 4 โข (invgโ๐บ) = (invgโ๐บ) | |
6 | mulg0.t | . . . 4 โข ยท = (.gโ๐บ) | |
7 | eqid 2728 | . . . 4 โข seq1((+gโ๐บ), (โ ร {๐})) = seq1((+gโ๐บ), (โ ร {๐})) | |
8 | 2, 3, 4, 5, 6, 7 | mulgval 19026 | . . 3 โข ((0 โ โค โง ๐ โ ๐ต) โ (0 ยท ๐) = if(0 = 0, 0 , if(0 < 0, (seq1((+gโ๐บ), (โ ร {๐}))โ0), ((invgโ๐บ)โ(seq1((+gโ๐บ), (โ ร {๐}))โ-0))))) |
9 | eqid 2728 | . . . 4 โข 0 = 0 | |
10 | 9 | iftruei 4536 | . . 3 โข if(0 = 0, 0 , if(0 < 0, (seq1((+gโ๐บ), (โ ร {๐}))โ0), ((invgโ๐บ)โ(seq1((+gโ๐บ), (โ ร {๐}))โ-0)))) = 0 |
11 | 8, 10 | eqtrdi 2784 | . 2 โข ((0 โ โค โง ๐ โ ๐ต) โ (0 ยท ๐) = 0 ) |
12 | 1, 11 | mpan 689 | 1 โข (๐ โ ๐ต โ (0 ยท ๐) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1534 โ wcel 2099 ifcif 4529 {csn 4629 class class class wbr 5148 ร cxp 5676 โcfv 6548 (class class class)co 7420 0cc0 11138 1c1 11139 < clt 11278 -cneg 11475 โcn 12242 โคcz 12588 seqcseq 13998 Basecbs 17179 +gcplusg 17232 0gc0g 17420 invgcminusg 18890 .gcmg 19022 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-seq 13999 df-mulg 19023 |
This theorem is referenced by: ressmulgnn0 19032 mulgnn0gsum 19034 mulgnn0p1 19039 mulgnn0subcl 19041 mulgneg 19046 mulgaddcom 19052 mulginvcom 19053 mulgnn0z 19055 mulgnn0dir 19058 mulgneg2 19062 mulgnn0ass 19064 mhmmulg 19069 submmulg 19072 cycsubm 19156 odid 19492 oddvdsnn0 19498 oddvds 19501 odf1 19516 gexid 19535 mulgnn0di 19779 0cyg 19847 gsumconst 19888 srgmulgass 20156 srgpcomp 20157 srgbinomlem3 20167 srgbinomlem4 20168 srgbinom 20170 mulgass2 20244 lmodvsmmulgdi 20779 cnfldmulg 21330 cnfldexp 21331 freshmansdream 21507 assamulgscmlem1 21831 mplcoe3 21975 mplcoe5 21977 mplbas2 21979 psrbagev1 22020 psrbagev1OLD 22021 evlslem3 22025 evlslem1 22027 mhppwdeg 22073 ply1scltm 22199 chfacfscmulgsum 22761 chfacfpmmulgsum 22765 cpmadugsumlemF 22777 tmdmulg 23995 clmmulg 25027 dchrptlem2 27197 xrsmulgzz 32736 omndmul2 32792 omndmul 32794 archirng 32896 archirngz 32897 archiabllem1b 32900 archiabllem2c 32903 aks6d1c1p6 41585 idomnnzpownz 41603 aks6d1c5lem2 41609 deg1pow 41613 aks6d1c6isolem1 41646 aks6d1c6lem5 41649 evlsvvvallem 41794 evlsvvval 41796 selvvvval 41818 evlselv 41820 mhphflem 41829 mhphf 41830 lmodvsmdi 47446 |
Copyright terms: Public domain | W3C validator |