| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg0.o | ⊢ 0 = (0g‘𝐺) |
| mulg0.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12599 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2735 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | eqid 2735 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | eqid 2735 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 19054 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
| 9 | eqid 2735 | . . . 4 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4507 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
| 11 | 8, 10 | eqtrdi 2786 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ifcif 4500 {csn 4601 class class class wbr 5119 × cxp 5652 ‘cfv 6531 (class class class)co 7405 0cc0 11129 1c1 11130 < clt 11269 -cneg 11467 ℕcn 12240 ℤcz 12588 seqcseq 14019 Basecbs 17228 +gcplusg 17271 0gc0g 17453 invgcminusg 18917 .gcmg 19050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-seq 14020 df-mulg 19051 |
| This theorem is referenced by: ressmulgnn0 19060 mulgnn0gsum 19063 mulgnn0p1 19068 mulgnn0subcl 19070 mulgneg 19075 mulgaddcom 19081 mulginvcom 19082 mulgnn0z 19084 mulgnn0dir 19087 mulgneg2 19091 mulgnn0ass 19093 mhmmulg 19098 submmulg 19101 cycsubm 19185 odid 19519 oddvdsnn0 19525 oddvds 19528 odf1 19543 gexid 19562 mulgnn0di 19806 0cyg 19874 gsumconst 19915 srgmulgass 20177 srgpcomp 20178 srgbinomlem3 20188 srgbinomlem4 20189 srgbinom 20191 mulgass2 20269 lmodvsmmulgdi 20854 cnfldmulg 21366 cnfldexp 21367 freshmansdream 21535 assamulgscmlem1 21859 mplcoe3 21996 mplcoe5 21998 mplbas2 22000 psrbagev1 22035 evlslem3 22038 evlslem1 22040 mhppwdeg 22088 psdpw 22108 ply1scltm 22218 ply1idvr1 22232 chfacfscmulgsum 22798 chfacfpmmulgsum 22802 cpmadugsumlemF 22814 tmdmulg 24030 clmmulg 25052 dchrptlem2 27228 xrsmulgzz 33001 ressmulgnn0d 33039 omndmul2 33080 omndmul 33082 archirng 33186 archirngz 33187 archiabllem1b 33190 archiabllem2c 33193 elrgspnlem1 33237 elrgspnlem2 33238 elrgspnlem3 33239 elrgspnlem4 33240 elrgspn 33241 elrgspnsubrunlem1 33242 elrgspnsubrunlem2 33243 rprmdvdspow 33548 evl1deg1 33589 evl1deg2 33590 evl1deg3 33591 aks6d1c1p6 42127 idomnnzpownz 42145 aks6d1c5lem2 42151 deg1pow 42154 aks6d1c6isolem1 42187 aks6d1c6lem5 42190 domnexpgn0cl 42546 abvexp 42555 evlsvvvallem 42584 evlsvvval 42586 selvvvval 42608 evlselv 42610 mhphflem 42619 mhphf 42620 lmodvsmdi 48354 |
| Copyright terms: Public domain | W3C validator |