| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulg0 | Structured version Visualization version GIF version | ||
| Description: Group multiple (exponentiation) operation at zero. (Contributed by Mario Carneiro, 11-Dec-2014.) |
| Ref | Expression |
|---|---|
| mulg0.b | ⊢ 𝐵 = (Base‘𝐺) |
| mulg0.o | ⊢ 0 = (0g‘𝐺) |
| mulg0.t | ⊢ · = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| mulg0 | ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 12500 | . 2 ⊢ 0 ∈ ℤ | |
| 2 | mulg0.b | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | eqid 2729 | . . . 4 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | mulg0.o | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 5 | eqid 2729 | . . . 4 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 6 | mulg0.t | . . . 4 ⊢ · = (.g‘𝐺) | |
| 7 | eqid 2729 | . . . 4 ⊢ seq1((+g‘𝐺), (ℕ × {𝑋})) = seq1((+g‘𝐺), (ℕ × {𝑋})) | |
| 8 | 2, 3, 4, 5, 6, 7 | mulgval 18968 | . . 3 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0))))) |
| 9 | eqid 2729 | . . . 4 ⊢ 0 = 0 | |
| 10 | 9 | iftruei 4485 | . . 3 ⊢ if(0 = 0, 0 , if(0 < 0, (seq1((+g‘𝐺), (ℕ × {𝑋}))‘0), ((invg‘𝐺)‘(seq1((+g‘𝐺), (ℕ × {𝑋}))‘-0)))) = 0 |
| 11 | 8, 10 | eqtrdi 2780 | . 2 ⊢ ((0 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (0 · 𝑋) = 0 ) |
| 12 | 1, 11 | mpan 690 | 1 ⊢ (𝑋 ∈ 𝐵 → (0 · 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4478 {csn 4579 class class class wbr 5095 × cxp 5621 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 < clt 11168 -cneg 11366 ℕcn 12146 ℤcz 12489 seqcseq 13926 Basecbs 17138 +gcplusg 17179 0gc0g 17361 invgcminusg 18831 .gcmg 18964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-seq 13927 df-mulg 18965 |
| This theorem is referenced by: ressmulgnn0 18974 mulgnn0gsum 18977 mulgnn0p1 18982 mulgnn0subcl 18984 mulgneg 18989 mulgaddcom 18995 mulginvcom 18996 mulgnn0z 18998 mulgnn0dir 19001 mulgneg2 19005 mulgnn0ass 19007 mhmmulg 19012 submmulg 19015 cycsubm 19099 odid 19435 oddvdsnn0 19441 oddvds 19444 odf1 19459 gexid 19478 mulgnn0di 19722 0cyg 19790 gsumconst 19831 omndmul2 20030 omndmul 20032 srgmulgass 20120 srgpcomp 20121 srgbinomlem3 20131 srgbinomlem4 20132 srgbinom 20134 mulgass2 20212 lmodvsmmulgdi 20818 cnfldmulg 21328 cnfldexp 21329 freshmansdream 21499 assamulgscmlem1 21824 mplcoe3 21961 mplcoe5 21963 mplbas2 21965 psrbagev1 22000 evlslem3 22003 evlslem1 22005 mhppwdeg 22053 psdpw 22073 ply1scltm 22183 ply1idvr1 22197 chfacfscmulgsum 22763 chfacfpmmulgsum 22767 cpmadugsumlemF 22779 tmdmulg 23995 clmmulg 25017 dchrptlem2 27192 xrsmulgzz 32976 ressmulgnn0d 33011 archirng 33140 archirngz 33141 archiabllem1b 33144 archiabllem2c 33147 elrgspnlem1 33192 elrgspnlem2 33193 elrgspnlem3 33194 elrgspnlem4 33195 elrgspn 33196 elrgspnsubrunlem1 33197 elrgspnsubrunlem2 33198 rprmdvdspow 33480 evl1deg1 33521 evl1deg2 33522 evl1deg3 33523 aks6d1c1p6 42087 idomnnzpownz 42105 aks6d1c5lem2 42111 deg1pow 42114 aks6d1c6isolem1 42147 aks6d1c6lem5 42150 domnexpgn0cl 42496 abvexp 42505 evlsvvvallem 42534 evlsvvval 42536 selvvvval 42558 evlselv 42560 mhphflem 42569 mhphf 42570 lmodvsmdi 48351 |
| Copyright terms: Public domain | W3C validator |