| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ig1pval2 | Structured version Visualization version GIF version | ||
| Description: Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| Ref | Expression |
|---|---|
| ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pval2.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| ig1pval2 | ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1ring 22153 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 3 | eqid 2730 | . . . . 5 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 4 | ig1pval2.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
| 5 | 3, 4 | lidl0 21160 | . . . 4 ⊢ (𝑃 ∈ Ring → { 0 } ∈ (LIdeal‘𝑃)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑃)) |
| 7 | ig1pval.g | . . . 4 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 8 | eqid 2730 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 9 | eqid 2730 | . . . 4 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 10 | 1, 7, 4, 3, 8, 9 | ig1pval 26101 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ { 0 } ∈ (LIdeal‘𝑃)) → (𝐺‘{ 0 }) = if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < )))) |
| 11 | 6, 10 | mpdan 687 | . 2 ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < )))) |
| 12 | eqid 2730 | . . 3 ⊢ { 0 } = { 0 } | |
| 13 | 12 | iftruei 4480 | . 2 ⊢ if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < ))) = 0 |
| 14 | 11, 13 | eqtrdi 2781 | 1 ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2110 ∖ cdif 3897 ∩ cin 3899 ifcif 4473 {csn 4574 “ cima 5617 ‘cfv 6477 ℩crio 7297 infcinf 9320 ℝcr 10997 < clt 11138 0gc0g 17335 Ringcrg 20144 LIdealclidl 21136 Poly1cpl1 22082 deg1cdg1 25979 Monic1pcmn1 26051 idlGen1pcig1p 26055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-inf 9322 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-7 12185 df-8 12186 df-9 12187 df-n0 12374 df-z 12461 df-dec 12581 df-uz 12725 df-fz 13400 df-fzo 13547 df-seq 13901 df-hash 14230 df-struct 17050 df-sets 17067 df-slot 17085 df-ndx 17097 df-base 17113 df-ress 17134 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-ip 17171 df-tset 17172 df-ple 17173 df-ds 17175 df-hom 17177 df-cco 17178 df-0g 17337 df-gsum 17338 df-prds 17343 df-pws 17345 df-mre 17480 df-mrc 17481 df-acs 17483 df-mgm 18540 df-sgrp 18619 df-mnd 18635 df-mhm 18683 df-submnd 18684 df-grp 18841 df-minusg 18842 df-mulg 18973 df-subg 19028 df-ghm 19118 df-cntz 19222 df-cmn 19687 df-abl 19688 df-mgp 20052 df-rng 20064 df-ur 20093 df-ring 20146 df-subrng 20454 df-subrg 20478 df-lss 20858 df-sra 21100 df-rgmod 21101 df-lidl 21138 df-psr 21839 df-mpl 21841 df-opsr 21843 df-psr1 22085 df-ply1 22087 df-ig1p 26060 |
| This theorem is referenced by: ig1pcl 26104 |
| Copyright terms: Public domain | W3C validator |