| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ig1pval2 | Structured version Visualization version GIF version | ||
| Description: Generator of the zero ideal. (Contributed by Stefan O'Rear, 29-Mar-2015.) (Proof shortened by AV, 25-Sep-2020.) |
| Ref | Expression |
|---|---|
| ig1pval.p | ⊢ 𝑃 = (Poly1‘𝑅) |
| ig1pval.g | ⊢ 𝐺 = (idlGen1p‘𝑅) |
| ig1pval2.z | ⊢ 0 = (0g‘𝑃) |
| Ref | Expression |
|---|---|
| ig1pval2 | ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ig1pval.p | . . . . 5 ⊢ 𝑃 = (Poly1‘𝑅) | |
| 2 | 1 | ply1ring 22166 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 3 | eqid 2731 | . . . . 5 ⊢ (LIdeal‘𝑃) = (LIdeal‘𝑃) | |
| 4 | ig1pval2.z | . . . . 5 ⊢ 0 = (0g‘𝑃) | |
| 5 | 3, 4 | lidl0 21173 | . . . 4 ⊢ (𝑃 ∈ Ring → { 0 } ∈ (LIdeal‘𝑃)) |
| 6 | 2, 5 | syl 17 | . . 3 ⊢ (𝑅 ∈ Ring → { 0 } ∈ (LIdeal‘𝑃)) |
| 7 | ig1pval.g | . . . 4 ⊢ 𝐺 = (idlGen1p‘𝑅) | |
| 8 | eqid 2731 | . . . 4 ⊢ (deg1‘𝑅) = (deg1‘𝑅) | |
| 9 | eqid 2731 | . . . 4 ⊢ (Monic1p‘𝑅) = (Monic1p‘𝑅) | |
| 10 | 1, 7, 4, 3, 8, 9 | ig1pval 26114 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ { 0 } ∈ (LIdeal‘𝑃)) → (𝐺‘{ 0 }) = if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < )))) |
| 11 | 6, 10 | mpdan 687 | . 2 ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < )))) |
| 12 | eqid 2731 | . . 3 ⊢ { 0 } = { 0 } | |
| 13 | 12 | iftruei 4481 | . 2 ⊢ if({ 0 } = { 0 }, 0 , (℩𝑔 ∈ ({ 0 } ∩ (Monic1p‘𝑅))((deg1‘𝑅)‘𝑔) = inf(((deg1‘𝑅) “ ({ 0 } ∖ { 0 })), ℝ, < ))) = 0 |
| 14 | 11, 13 | eqtrdi 2782 | 1 ⊢ (𝑅 ∈ Ring → (𝐺‘{ 0 }) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∩ cin 3896 ifcif 4474 {csn 4575 “ cima 5622 ‘cfv 6487 ℩crio 7308 infcinf 9331 ℝcr 11011 < clt 11152 0gc0g 17349 Ringcrg 20157 LIdealclidl 21149 Poly1cpl1 22095 deg1cdg1 25992 Monic1pcmn1 26064 idlGen1pcig1p 26068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-ofr 7617 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mre 17494 df-mrc 17495 df-acs 17497 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-submnd 18698 df-grp 18855 df-minusg 18856 df-mulg 18987 df-subg 19042 df-ghm 19131 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-subrng 20467 df-subrg 20491 df-lss 20871 df-sra 21113 df-rgmod 21114 df-lidl 21151 df-psr 21852 df-mpl 21854 df-opsr 21856 df-psr1 22098 df-ply1 22100 df-ig1p 26073 |
| This theorem is referenced by: ig1pcl 26117 |
| Copyright terms: Public domain | W3C validator |