| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubc2 | Structured version Visualization version GIF version | ||
| Description: An image of a full functor is a (full) subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubc.s | ⊢ 𝑆 = (𝐹 “ 𝐴) |
| imasubc.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| imasubc.k | ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| imasubc.f | ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| imasubc2 | ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubc.s | . . . 4 ⊢ 𝑆 = (𝐹 “ 𝐴) | |
| 2 | imasubc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 3 | imasubc.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) | |
| 4 | imasubc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) | |
| 5 | eqid 2734 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | eqid 2734 | . . . 4 ⊢ (Homf ‘𝐸) = (Homf ‘𝐸) | |
| 7 | 1, 2, 3, 4, 5, 6 | imasubc 48961 | . . 3 ⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ (Base‘𝐸) ∧ ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) = 𝐾)) |
| 8 | 7 | simp3d 1144 | . 2 ⊢ (𝜑 → ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) = 𝐾) |
| 9 | fullfunc 17908 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 10 | 9 | ssbri 5162 | . . . . 5 ⊢ (𝐹(𝐷 Full 𝐸)𝐺 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 12 | 11 | funcrcl3 48938 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 13 | 7 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐸)) |
| 14 | 5, 6, 12, 13 | fullsubc 17850 | . 2 ⊢ (𝜑 → ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐸)) |
| 15 | 8, 14 | eqeltrrd 2834 | 1 ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 ⊆ wss 3924 {csn 4599 ∪ ciun 4965 class class class wbr 5117 × cxp 5650 ◡ccnv 5651 ↾ cres 5654 “ cima 5655 Fn wfn 6523 ‘cfv 6528 (class class class)co 7400 ∈ cmpo 7402 Basecbs 17215 Hom chom 17269 Homf chomf 17665 Subcatcsubc 17809 Func cfunc 17854 Full cful 17904 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-1st 7983 df-2nd 7984 df-map 8837 df-pm 8838 df-ixp 8907 df-cat 17667 df-cid 17668 df-homf 17669 df-ssc 17810 df-subc 17812 df-func 17858 df-full 17906 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |