| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > imasubc2 | Structured version Visualization version GIF version | ||
| Description: An image of a full functor is a (full) subcategory. Remark 4.2(3) of [Adamek] p. 48. (Contributed by Zhi Wang, 7-Nov-2025.) |
| Ref | Expression |
|---|---|
| imasubc.s | ⊢ 𝑆 = (𝐹 “ 𝐴) |
| imasubc.h | ⊢ 𝐻 = (Hom ‘𝐷) |
| imasubc.k | ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) |
| imasubc.f | ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) |
| Ref | Expression |
|---|---|
| imasubc2 | ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imasubc.s | . . . 4 ⊢ 𝑆 = (𝐹 “ 𝐴) | |
| 2 | imasubc.h | . . . 4 ⊢ 𝐻 = (Hom ‘𝐷) | |
| 3 | imasubc.k | . . . 4 ⊢ 𝐾 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ∪ 𝑝 ∈ ((◡𝐹 “ {𝑥}) × (◡𝐹 “ {𝑦}))((𝐺‘𝑝) “ (𝐻‘𝑝))) | |
| 4 | imasubc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Full 𝐸)𝐺) | |
| 5 | eqid 2731 | . . . 4 ⊢ (Base‘𝐸) = (Base‘𝐸) | |
| 6 | eqid 2731 | . . . 4 ⊢ (Homf ‘𝐸) = (Homf ‘𝐸) | |
| 7 | 1, 2, 3, 4, 5, 6 | imasubc 49262 | . . 3 ⊢ (𝜑 → (𝐾 Fn (𝑆 × 𝑆) ∧ 𝑆 ⊆ (Base‘𝐸) ∧ ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) = 𝐾)) |
| 8 | 7 | simp3d 1144 | . 2 ⊢ (𝜑 → ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) = 𝐾) |
| 9 | fullfunc 17815 | . . . . . 6 ⊢ (𝐷 Full 𝐸) ⊆ (𝐷 Func 𝐸) | |
| 10 | 9 | ssbri 5134 | . . . . 5 ⊢ (𝐹(𝐷 Full 𝐸)𝐺 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 11 | 4, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐹(𝐷 Func 𝐸)𝐺) |
| 12 | 11 | funcrcl3 49191 | . . 3 ⊢ (𝜑 → 𝐸 ∈ Cat) |
| 13 | 7 | simp2d 1143 | . . 3 ⊢ (𝜑 → 𝑆 ⊆ (Base‘𝐸)) |
| 14 | 5, 6, 12, 13 | fullsubc 17757 | . 2 ⊢ (𝜑 → ((Homf ‘𝐸) ↾ (𝑆 × 𝑆)) ∈ (Subcat‘𝐸)) |
| 15 | 8, 14 | eqeltrrd 2832 | 1 ⊢ (𝜑 → 𝐾 ∈ (Subcat‘𝐸)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {csn 4573 ∪ ciun 4939 class class class wbr 5089 × cxp 5612 ◡ccnv 5613 ↾ cres 5616 “ cima 5617 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 Hom chom 17172 Homf chomf 17572 Subcatcsubc 17716 Func cfunc 17761 Full cful 17811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-pm 8753 df-ixp 8822 df-cat 17574 df-cid 17575 df-homf 17576 df-ssc 17717 df-subc 17719 df-func 17765 df-full 17813 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |