| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indfsd | Structured version Visualization version GIF version | ||
| Description: The indicator function of a finite set has finite support. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| indfsd.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| indfsd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| indfsd.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| indfsd | ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) finSupp 0) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvexd 6831 | . 2 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) ∈ V) | |
| 2 | c0ex 11097 | . . 3 ⊢ 0 ∈ V | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 0 ∈ V) |
| 4 | indfsd.1 | . . . 4 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 5 | indfsd.2 | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
| 6 | indf 32791 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 7 | 4, 5, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| 8 | 7 | ffund 6650 | . 2 ⊢ (𝜑 → Fun ((𝟭‘𝑂)‘𝐴)) |
| 9 | indsupp 32803 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) | |
| 10 | 4, 5, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| 11 | indfsd.3 | . . 3 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 12 | 10, 11 | eqeltrd 2828 | . 2 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) ∈ Fin) |
| 13 | 1, 3, 8, 12 | isfsuppd 9244 | 1 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) finSupp 0) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3433 ⊆ wss 3899 {cpr 4575 class class class wbr 5088 ⟶wf 6472 ‘cfv 6476 (class class class)co 7340 supp csupp 8084 Fincfn 8863 finSupp cfsupp 9239 0cc0 10997 1c1 10998 𝟭cind 32786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-i2m1 11065 ax-1ne0 11066 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7343 df-oprab 7344 df-mpo 7345 df-supp 8085 df-fsupp 9240 df-ind 32787 |
| This theorem is referenced by: gsumind 33278 esplympl 33556 |
| Copyright terms: Public domain | W3C validator |