| Step | Hyp | Ref
| Expression |
| 1 | | fvexd 6831 |
. . . 4
⊢ (𝜑 → (Base‘𝑅) ∈ V) |
| 2 | | esplympl.d |
. . . . . 6
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 3 | | ovex 7373 |
. . . . . 6
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 4 | 2, 3 | rabex2 5276 |
. . . . 5
⊢ 𝐷 ∈ V |
| 5 | 4 | a1i 11 |
. . . 4
⊢ (𝜑 → 𝐷 ∈ V) |
| 6 | | esplympl.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ Fin) |
| 7 | | esplympl.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 8 | | esplympl.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈
ℕ0) |
| 9 | 2, 6, 7, 8 | esplyfval 33554 |
. . . . . 6
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) = ((ℤRHom‘𝑅) ∘ ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})))) |
| 10 | 9 | eqcomd 2735 |
. . . . 5
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) = ((𝐼eSymPoly𝑅)‘𝐾)) |
| 11 | | eqid 2729 |
. . . . . . . 8
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
| 12 | 11 | zrhrhm 21402 |
. . . . . . 7
⊢ (𝑅 ∈ Ring →
(ℤRHom‘𝑅)
∈ (ℤring RingHom 𝑅)) |
| 13 | | zringbas 21344 |
. . . . . . . 8
⊢ ℤ =
(Base‘ℤring) |
| 14 | | eqid 2729 |
. . . . . . . 8
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 15 | 13, 14 | rhmf 20356 |
. . . . . . 7
⊢
((ℤRHom‘𝑅) ∈ (ℤring RingHom
𝑅) →
(ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 16 | 7, 12, 15 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → (ℤRHom‘𝑅):ℤ⟶(Base‘𝑅)) |
| 17 | 2, 6, 7, 8 | esplylem 33555 |
. . . . . . . 8
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ⊆ 𝐷) |
| 18 | | indf 32791 |
. . . . . . . 8
⊢ ((𝐷 ∈ V ∧
((𝟭‘𝐼)
“ {𝑐 ∈ 𝒫
𝐼 ∣
(♯‘𝑐) = 𝐾}) ⊆ 𝐷) → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 19 | 5, 17, 18 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶{0, 1}) |
| 20 | | 0zd 12471 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈
ℤ) |
| 21 | | 1zzd 12494 |
. . . . . . . 8
⊢ (𝜑 → 1 ∈
ℤ) |
| 22 | 20, 21 | prssd 4771 |
. . . . . . 7
⊢ (𝜑 → {0, 1} ⊆
ℤ) |
| 23 | 19, 22 | fssd 6663 |
. . . . . 6
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})):𝐷⟶ℤ) |
| 24 | 16, 23 | fcod 6671 |
. . . . 5
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))):𝐷⟶(Base‘𝑅)) |
| 25 | 10, 24 | feq1dd 6629 |
. . . 4
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾):𝐷⟶(Base‘𝑅)) |
| 26 | 1, 5, 25 | elmapdd 8759 |
. . 3
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ ((Base‘𝑅) ↑m 𝐷)) |
| 27 | | eqid 2729 |
. . . 4
⊢ (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅) |
| 28 | 2 | psrbasfsupp 33540 |
. . . 4
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 29 | | eqid 2729 |
. . . 4
⊢
(Base‘(𝐼
mPwSer 𝑅)) =
(Base‘(𝐼 mPwSer 𝑅)) |
| 30 | 27, 14, 28, 29, 6 | psrbas 21824 |
. . 3
⊢ (𝜑 → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷)) |
| 31 | 26, 30 | eleqtrrd 2831 |
. 2
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐼 mPwSer 𝑅))) |
| 32 | | fvexd 6831 |
. . . 4
⊢ (𝜑 → (0g‘𝑅) ∈ V) |
| 33 | | zex 12468 |
. . . . 5
⊢ ℤ
∈ V |
| 34 | 33 | a1i 11 |
. . . 4
⊢ (𝜑 → ℤ ∈
V) |
| 35 | | indf1o 32800 |
. . . . . . . 8
⊢ (𝐼 ∈ Fin →
(𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)) |
| 36 | | f1of 6758 |
. . . . . . . 8
⊢
((𝟭‘𝐼):𝒫 𝐼–1-1-onto→({0,
1} ↑m 𝐼)
→ (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 37 | 6, 35, 36 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝟭‘𝐼):𝒫 𝐼⟶({0, 1} ↑m 𝐼)) |
| 38 | 37 | ffund 6650 |
. . . . . 6
⊢ (𝜑 → Fun (𝟭‘𝐼)) |
| 39 | 6 | pwexd 5314 |
. . . . . . . 8
⊢ (𝜑 → 𝒫 𝐼 ∈ V) |
| 40 | | ssrab2 4027 |
. . . . . . . . 9
⊢ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼 |
| 41 | 40 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ⊆ 𝒫 𝐼) |
| 42 | 39, 41 | ssexd 5259 |
. . . . . . 7
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ V) |
| 43 | | hashcl 14251 |
. . . . . . . . 9
⊢ (𝐼 ∈ Fin →
(♯‘𝐼) ∈
ℕ0) |
| 44 | 6, 43 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (♯‘𝐼) ∈
ℕ0) |
| 45 | 8 | nn0zd 12485 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
| 46 | | bccl 14217 |
. . . . . . . 8
⊢
(((♯‘𝐼)
∈ ℕ0 ∧ 𝐾 ∈ ℤ) →
((♯‘𝐼)C𝐾) ∈
ℕ0) |
| 47 | 44, 45, 46 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ((♯‘𝐼)C𝐾) ∈
ℕ0) |
| 48 | | hashbc 14348 |
. . . . . . . . 9
⊢ ((𝐼 ∈ Fin ∧ 𝐾 ∈ ℤ) →
((♯‘𝐼)C𝐾) = (♯‘{𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 49 | 6, 45, 48 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → ((♯‘𝐼)C𝐾) = (♯‘{𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) |
| 50 | 49 | eqcomd 2735 |
. . . . . . 7
⊢ (𝜑 → (♯‘{𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) = ((♯‘𝐼)C𝐾)) |
| 51 | | hashvnfin 14255 |
. . . . . . . 8
⊢ (({𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ V ∧ ((♯‘𝐼)C𝐾) ∈ ℕ0) →
((♯‘{𝑐 ∈
𝒫 𝐼 ∣
(♯‘𝑐) = 𝐾}) = ((♯‘𝐼)C𝐾) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ Fin)) |
| 52 | 51 | imp 406 |
. . . . . . 7
⊢ ((({𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ V ∧ ((♯‘𝐼)C𝐾) ∈ ℕ0) ∧
(♯‘{𝑐 ∈
𝒫 𝐼 ∣
(♯‘𝑐) = 𝐾}) = ((♯‘𝐼)C𝐾)) → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ Fin) |
| 53 | 42, 47, 50, 52 | syl21anc 837 |
. . . . . 6
⊢ (𝜑 → {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ Fin) |
| 54 | | imafi 9193 |
. . . . . 6
⊢ ((Fun
(𝟭‘𝐼) ∧
{𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾} ∈ Fin) → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∈ Fin) |
| 55 | 38, 53, 54 | syl2anc 584 |
. . . . 5
⊢ (𝜑 → ((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}) ∈ Fin) |
| 56 | 5, 17, 55 | indfsd 32804 |
. . . 4
⊢ (𝜑 → ((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾})) finSupp 0) |
| 57 | | eqid 2729 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 58 | 11, 57 | zrh0 21404 |
. . . . 5
⊢ (𝑅 ∈ Ring →
((ℤRHom‘𝑅)‘0) = (0g‘𝑅)) |
| 59 | 7, 58 | syl 17 |
. . . 4
⊢ (𝜑 → ((ℤRHom‘𝑅)‘0) =
(0g‘𝑅)) |
| 60 | 32, 20, 19, 16, 22, 5, 34, 56, 59 | fsuppcor 9282 |
. . 3
⊢ (𝜑 → ((ℤRHom‘𝑅) ∘
((𝟭‘𝐷)‘((𝟭‘𝐼) “ {𝑐 ∈ 𝒫 𝐼 ∣ (♯‘𝑐) = 𝐾}))) finSupp (0g‘𝑅)) |
| 61 | 9, 60 | eqbrtrd 5110 |
. 2
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) finSupp (0g‘𝑅)) |
| 62 | | eqid 2729 |
. . 3
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 63 | | esplympl.1 |
. . 3
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 64 | 62, 27, 29, 57, 63 | mplelbas 21882 |
. 2
⊢ (((𝐼eSymPoly𝑅)‘𝐾) ∈ 𝑀 ↔ (((𝐼eSymPoly𝑅)‘𝐾) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ ((𝐼eSymPoly𝑅)‘𝐾) finSupp (0g‘𝑅))) |
| 65 | 31, 61, 64 | sylanbrc 583 |
1
⊢ (𝜑 → ((𝐼eSymPoly𝑅)‘𝐾) ∈ 𝑀) |