| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsupp | Structured version Visualization version GIF version | ||
| Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| indsupp | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) | |
| 2 | c0ex 11251 | . . . 4 ⊢ 0 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 0 ∈ V) |
| 4 | indf 32827 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 5 | fsuppeq 8196 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 0 ∈ V) → (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))) | |
| 6 | 5 | imp 406 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 0 ∈ V) ∧ ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 7 | 1, 3, 4, 6 | syl21anc 838 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 8 | prcom 4730 | . . . . . 6 ⊢ {0, 1} = {1, 0} | |
| 9 | 8 | difeq1i 4121 | . . . . 5 ⊢ ({0, 1} ∖ {0}) = ({1, 0} ∖ {0}) |
| 10 | ax-1ne0 11220 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 11 | difprsn2 4799 | . . . . . 6 ⊢ (1 ≠ 0 → ({1, 0} ∖ {0}) = {1}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ({1, 0} ∖ {0}) = {1} |
| 13 | 9, 12 | eqtri 2764 | . . . 4 ⊢ ({0, 1} ∖ {0}) = {1} |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ({0, 1} ∖ {0}) = {1}) |
| 15 | 14 | imaeq2d 6076 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})) = (◡((𝟭‘𝑂)‘𝐴) “ {1})) |
| 16 | indpi1 32832 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) | |
| 17 | 7, 15, 16 | 3eqtrd 2780 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2939 Vcvv 3479 ∖ cdif 3947 ⊆ wss 3950 {csn 4624 {cpr 4626 ◡ccnv 5682 “ cima 5686 ⟶wf 6555 ‘cfv 6559 (class class class)co 7429 supp csupp 8181 0cc0 11151 1c1 11152 𝟭cind 32822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5277 ax-sep 5294 ax-nul 5304 ax-pow 5363 ax-pr 5430 ax-un 7751 ax-1cn 11209 ax-icn 11210 ax-addcl 11211 ax-addrcl 11212 ax-mulcl 11213 ax-mulrcl 11214 ax-i2m1 11219 ax-1ne0 11220 ax-rnegex 11222 ax-rrecex 11223 ax-cnre 11224 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6512 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-fv 6567 df-ov 7432 df-oprab 7433 df-mpo 7434 df-supp 8182 df-ind 32823 |
| This theorem is referenced by: elrgspnsubrunlem1 33239 |
| Copyright terms: Public domain | W3C validator |