| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsupp | Structured version Visualization version GIF version | ||
| Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| indsupp | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) | |
| 2 | c0ex 11237 | . . . 4 ⊢ 0 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 0 ∈ V) |
| 4 | indf 32785 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 5 | fsuppeq 8182 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 0 ∈ V) → (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))) | |
| 6 | 5 | imp 406 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 0 ∈ V) ∧ ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 7 | 1, 3, 4, 6 | syl21anc 837 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 8 | prcom 4712 | . . . . . 6 ⊢ {0, 1} = {1, 0} | |
| 9 | 8 | difeq1i 4102 | . . . . 5 ⊢ ({0, 1} ∖ {0}) = ({1, 0} ∖ {0}) |
| 10 | ax-1ne0 11206 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 11 | difprsn2 4781 | . . . . . 6 ⊢ (1 ≠ 0 → ({1, 0} ∖ {0}) = {1}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ({1, 0} ∖ {0}) = {1} |
| 13 | 9, 12 | eqtri 2757 | . . . 4 ⊢ ({0, 1} ∖ {0}) = {1} |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ({0, 1} ∖ {0}) = {1}) |
| 15 | 14 | imaeq2d 6058 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})) = (◡((𝟭‘𝑂)‘𝐴) “ {1})) |
| 16 | indpi1 32790 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) | |
| 17 | 7, 15, 16 | 3eqtrd 2773 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ≠ wne 2931 Vcvv 3463 ∖ cdif 3928 ⊆ wss 3931 {csn 4606 {cpr 4608 ◡ccnv 5664 “ cima 5668 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 supp csupp 8167 0cc0 11137 1c1 11138 𝟭cind 32780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-i2m1 11205 ax-1ne0 11206 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-supp 8168 df-ind 32781 |
| This theorem is referenced by: elrgspnsubrunlem1 33195 |
| Copyright terms: Public domain | W3C validator |