| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsupp | Structured version Visualization version GIF version | ||
| Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| indsupp | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) | |
| 2 | c0ex 11174 | . . . 4 ⊢ 0 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 0 ∈ V) |
| 4 | indf 32784 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 5 | fsuppeq 8156 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 0 ∈ V) → (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))) | |
| 6 | 5 | imp 406 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 0 ∈ V) ∧ ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 7 | 1, 3, 4, 6 | syl21anc 837 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 8 | prcom 4698 | . . . . . 6 ⊢ {0, 1} = {1, 0} | |
| 9 | 8 | difeq1i 4087 | . . . . 5 ⊢ ({0, 1} ∖ {0}) = ({1, 0} ∖ {0}) |
| 10 | ax-1ne0 11143 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 11 | difprsn2 4767 | . . . . . 6 ⊢ (1 ≠ 0 → ({1, 0} ∖ {0}) = {1}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ({1, 0} ∖ {0}) = {1} |
| 13 | 9, 12 | eqtri 2753 | . . . 4 ⊢ ({0, 1} ∖ {0}) = {1} |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ({0, 1} ∖ {0}) = {1}) |
| 15 | 14 | imaeq2d 6033 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})) = (◡((𝟭‘𝑂)‘𝐴) “ {1})) |
| 16 | indpi1 32789 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) | |
| 17 | 7, 15, 16 | 3eqtrd 2769 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∖ cdif 3913 ⊆ wss 3916 {csn 4591 {cpr 4593 ◡ccnv 5639 “ cima 5643 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 supp csupp 8141 0cc0 11074 1c1 11075 𝟭cind 32779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-i2m1 11142 ax-1ne0 11143 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-supp 8142 df-ind 32780 |
| This theorem is referenced by: elrgspnsubrunlem1 33204 |
| Copyright terms: Public domain | W3C validator |