| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indsupp | Structured version Visualization version GIF version | ||
| Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| indsupp | ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 𝑂 ∈ 𝑉) | |
| 2 | c0ex 11109 | . . . 4 ⊢ 0 ∈ V | |
| 3 | 2 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → 0 ∈ V) |
| 4 | indf 32798 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 5 | fsuppeq 8108 | . . . 4 ⊢ ((𝑂 ∈ 𝑉 ∧ 0 ∈ V) → (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))) | |
| 6 | 5 | imp 406 | . . 3 ⊢ (((𝑂 ∈ 𝑉 ∧ 0 ∈ V) ∧ ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 7 | 1, 3, 4, 6 | syl21anc 837 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))) |
| 8 | prcom 4684 | . . . . . 6 ⊢ {0, 1} = {1, 0} | |
| 9 | 8 | difeq1i 4073 | . . . . 5 ⊢ ({0, 1} ∖ {0}) = ({1, 0} ∖ {0}) |
| 10 | ax-1ne0 11078 | . . . . . 6 ⊢ 1 ≠ 0 | |
| 11 | difprsn2 4752 | . . . . . 6 ⊢ (1 ≠ 0 → ({1, 0} ∖ {0}) = {1}) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ({1, 0} ∖ {0}) = {1} |
| 13 | 9, 12 | eqtri 2752 | . . . 4 ⊢ ({0, 1} ∖ {0}) = {1} |
| 14 | 13 | a1i 11 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ({0, 1} ∖ {0}) = {1}) |
| 15 | 14 | imaeq2d 6011 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})) = (◡((𝟭‘𝑂)‘𝐴) “ {1})) |
| 16 | indpi1 32803 | . 2 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (◡((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴) | |
| 17 | 7, 15, 16 | 3eqtrd 2768 | 1 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3436 ∖ cdif 3900 ⊆ wss 3903 {csn 4577 {cpr 4579 ◡ccnv 5618 “ cima 5622 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 supp csupp 8093 0cc0 11009 1c1 11010 𝟭cind 32793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8094 df-ind 32794 |
| This theorem is referenced by: elrgspnsubrunlem1 33187 |
| Copyright terms: Public domain | W3C validator |