Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indsupp Structured version   Visualization version   GIF version

Theorem indsupp 32763
Description: The support of the indicator function. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Assertion
Ref Expression
indsupp ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴)

Proof of Theorem indsupp
StepHypRef Expression
1 simpl 482 . . 3 ((𝑂𝑉𝐴𝑂) → 𝑂𝑉)
2 c0ex 11144 . . . 4 0 ∈ V
32a1i 11 . . 3 ((𝑂𝑉𝐴𝑂) → 0 ∈ V)
4 indf 32751 . . 3 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
5 fsuppeq 8131 . . . 4 ((𝑂𝑉 ∧ 0 ∈ V) → (((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1} → (((𝟭‘𝑂)‘𝐴) supp 0) = (((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0}))))
65imp 406 . . 3 (((𝑂𝑉 ∧ 0 ∈ V) ∧ ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) → (((𝟭‘𝑂)‘𝐴) supp 0) = (((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))
71, 3, 4, 6syl21anc 837 . 2 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = (((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})))
8 prcom 4692 . . . . . 6 {0, 1} = {1, 0}
98difeq1i 4081 . . . . 5 ({0, 1} ∖ {0}) = ({1, 0} ∖ {0})
10 ax-1ne0 11113 . . . . . 6 1 ≠ 0
11 difprsn2 4761 . . . . . 6 (1 ≠ 0 → ({1, 0} ∖ {0}) = {1})
1210, 11ax-mp 5 . . . . 5 ({1, 0} ∖ {0}) = {1}
139, 12eqtri 2752 . . . 4 ({0, 1} ∖ {0}) = {1}
1413a1i 11 . . 3 ((𝑂𝑉𝐴𝑂) → ({0, 1} ∖ {0}) = {1})
1514imaeq2d 6020 . 2 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) “ ({0, 1} ∖ {0})) = (((𝟭‘𝑂)‘𝐴) “ {1}))
16 indpi1 32756 . 2 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) “ {1}) = 𝐴)
177, 15, 163eqtrd 2768 1 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  {csn 4585  {cpr 4587  ccnv 5630  cima 5634  wf 6495  cfv 6499  (class class class)co 7369   supp csupp 8116  0cc0 11044  1c1 11045  𝟭cind 32746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-i2m1 11112  ax-1ne0 11113  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117  df-ind 32747
This theorem is referenced by:  elrgspnsubrunlem1  33171
  Copyright terms: Public domain W3C validator