| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumind | Structured version Visualization version GIF version | ||
| Description: The group sum of an indicator function of the set 𝐴 gives the size of 𝐴. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| gsumind.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| gsumind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| gsumind.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| gsumind | ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumind.1 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | gsumind.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
| 3 | indval2 32842 | . . . . . . 7 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0}))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0}))) |
| 5 | 4 | reseq1d 5932 | . . . . 5 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴)) |
| 6 | 1ex 11114 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 7 | 6 | fconst 6715 | . . . . . . . 8 ⊢ (𝐴 × {1}):𝐴⟶{1} |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {1}):𝐴⟶{1}) |
| 9 | 8 | ffnd 6658 | . . . . . 6 ⊢ (𝜑 → (𝐴 × {1}) Fn 𝐴) |
| 10 | c0ex 11112 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 11 | 10 | fconst 6715 | . . . . . . . 8 ⊢ ((𝑂 ∖ 𝐴) × {0}):(𝑂 ∖ 𝐴)⟶{0} |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) × {0}):(𝑂 ∖ 𝐴)⟶{0}) |
| 13 | 12 | ffnd 6658 | . . . . . 6 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) × {0}) Fn (𝑂 ∖ 𝐴)) |
| 14 | disjdif 4421 | . . . . . . 7 ⊢ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅) |
| 16 | fnunres1 6599 | . . . . . 6 ⊢ (((𝐴 × {1}) Fn 𝐴 ∧ ((𝑂 ∖ 𝐴) × {0}) Fn (𝑂 ∖ 𝐴) ∧ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅) → (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1})) | |
| 17 | 9, 13, 15, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1})) |
| 18 | fconstmpt 5681 | . . . . . 6 ⊢ (𝐴 × {1}) = (𝑥 ∈ 𝐴 ↦ 1) | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 × {1}) = (𝑥 ∈ 𝐴 ↦ 1)) |
| 20 | 5, 17, 19 | 3eqtrd 2770 | . . . 4 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 1)) |
| 21 | 20 | oveq2d 7368 | . . 3 ⊢ (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1))) |
| 22 | cnfldbas 21301 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 23 | cnfld0 21335 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 24 | cnfldfld 33314 | . . . . . . . 8 ⊢ ℂfld ∈ Field | |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂfld ∈ Field) |
| 26 | 25 | fldcrngd 20663 | . . . . . 6 ⊢ (𝜑 → ℂfld ∈ CRing) |
| 27 | 26 | crngringd 20170 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Ring) |
| 28 | 27 | ringcmnd 20208 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
| 29 | indf 32843 | . . . . . 6 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 30 | 1, 2, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| 31 | 0cnd 11111 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 32 | 1cnd 11113 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 33 | 31, 32 | prssd 4773 | . . . . 5 ⊢ (𝜑 → {0, 1} ⊆ ℂ) |
| 34 | 30, 33 | fssd 6674 | . . . 4 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶ℂ) |
| 35 | indsupp 32855 | . . . . . 6 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) | |
| 36 | 1, 2, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| 37 | 36 | eqimssd 3986 | . . . 4 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) ⊆ 𝐴) |
| 38 | gsumind.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 39 | 1, 2, 38 | indfsd 32856 | . . . 4 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) finSupp 0) |
| 40 | 22, 23, 28, 1, 34, 37, 39 | gsumres 19831 | . . 3 ⊢ (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg ((𝟭‘𝑂)‘𝐴))) |
| 41 | 26 | crnggrpd 20171 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Grp) |
| 42 | 41 | grpmndd 18865 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 43 | eqid 2731 | . . . . 5 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 44 | 22, 43 | gsumconst 19852 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 1 ∈ ℂ) → (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 45 | 42, 38, 32, 44 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 46 | 21, 40, 45 | 3eqtr3d 2774 | . 2 ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 47 | hashcl 14269 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 48 | 38, 47 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 49 | 48 | nn0zd 12500 | . . 3 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 50 | cnfldmulg 21346 | . . 3 ⊢ (((♯‘𝐴) ∈ ℤ ∧ 1 ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1)) | |
| 51 | 49, 32, 50 | syl2anc 584 | . 2 ⊢ (𝜑 → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1)) |
| 52 | 48 | nn0cnd 12450 | . . 3 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
| 53 | 52 | mulridd 11135 | . 2 ⊢ (𝜑 → ((♯‘𝐴) · 1) = (♯‘𝐴)) |
| 54 | 46, 51, 53 | 3eqtrd 2770 | 1 ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∪ cun 3895 ∩ cin 3896 ⊆ wss 3897 ∅c0 4282 {csn 4575 {cpr 4577 ↦ cmpt 5174 × cxp 5617 ↾ cres 5621 Fn wfn 6482 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 supp csupp 8096 Fincfn 8875 ℂcc 11010 0cc0 11012 1c1 11013 · cmul 11017 ℕ0cn0 12387 ℤcz 12474 ♯chash 14243 Σg cgsu 17350 Mndcmnd 18648 .gcmg 18986 Fieldcfield 20651 ℂfldccnfld 21297 𝟭cind 32838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 ax-addf 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-div 11781 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-starv 17182 df-tset 17186 df-ple 17187 df-ds 17189 df-unif 17190 df-0g 17351 df-gsum 17352 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-grp 18855 df-minusg 18856 df-mulg 18987 df-cntz 19235 df-cmn 19700 df-abl 19701 df-mgp 20065 df-rng 20077 df-ur 20106 df-ring 20159 df-cring 20160 df-oppr 20261 df-dvdsr 20281 df-unit 20282 df-invr 20312 df-dvr 20325 df-drng 20652 df-field 20653 df-cnfld 21298 df-ind 32839 |
| This theorem is referenced by: esplymhp 33596 |
| Copyright terms: Public domain | W3C validator |