| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gsumind | Structured version Visualization version GIF version | ||
| Description: The group sum of an indicator function of the set 𝐴 gives the size of 𝐴. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| gsumind.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| gsumind.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑂) |
| gsumind.3 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| gsumind | ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumind.1 | . . . . . . 7 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | gsumind.2 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ⊆ 𝑂) | |
| 3 | indval2 32790 | . . . . . . 7 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0}))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0}))) |
| 5 | 4 | reseq1d 5923 | . . . . 5 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴)) |
| 6 | 1ex 11099 | . . . . . . . . 9 ⊢ 1 ∈ V | |
| 7 | 6 | fconst 6704 | . . . . . . . 8 ⊢ (𝐴 × {1}):𝐴⟶{1} |
| 8 | 7 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → (𝐴 × {1}):𝐴⟶{1}) |
| 9 | 8 | ffnd 6647 | . . . . . 6 ⊢ (𝜑 → (𝐴 × {1}) Fn 𝐴) |
| 10 | c0ex 11097 | . . . . . . . . 9 ⊢ 0 ∈ V | |
| 11 | 10 | fconst 6704 | . . . . . . . 8 ⊢ ((𝑂 ∖ 𝐴) × {0}):(𝑂 ∖ 𝐴)⟶{0} |
| 12 | 11 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) × {0}):(𝑂 ∖ 𝐴)⟶{0}) |
| 13 | 12 | ffnd 6647 | . . . . . 6 ⊢ (𝜑 → ((𝑂 ∖ 𝐴) × {0}) Fn (𝑂 ∖ 𝐴)) |
| 14 | disjdif 4419 | . . . . . . 7 ⊢ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅ | |
| 15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅) |
| 16 | fnunres1 6588 | . . . . . 6 ⊢ (((𝐴 × {1}) Fn 𝐴 ∧ ((𝑂 ∖ 𝐴) × {0}) Fn (𝑂 ∖ 𝐴) ∧ (𝐴 ∩ (𝑂 ∖ 𝐴)) = ∅) → (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1})) | |
| 17 | 9, 13, 15, 16 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (((𝐴 × {1}) ∪ ((𝑂 ∖ 𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1})) |
| 18 | fconstmpt 5675 | . . . . . 6 ⊢ (𝐴 × {1}) = (𝑥 ∈ 𝐴 ↦ 1) | |
| 19 | 18 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝐴 × {1}) = (𝑥 ∈ 𝐴 ↦ 1)) |
| 20 | 5, 17, 19 | 3eqtrd 2768 | . . . 4 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (𝑥 ∈ 𝐴 ↦ 1)) |
| 21 | 20 | oveq2d 7356 | . . 3 ⊢ (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1))) |
| 22 | cnfldbas 21249 | . . . 4 ⊢ ℂ = (Base‘ℂfld) | |
| 23 | cnfld0 21283 | . . . 4 ⊢ 0 = (0g‘ℂfld) | |
| 24 | cnfldfld 33275 | . . . . . . . 8 ⊢ ℂfld ∈ Field | |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝜑 → ℂfld ∈ Field) |
| 26 | 25 | fldcrngd 20611 | . . . . . 6 ⊢ (𝜑 → ℂfld ∈ CRing) |
| 27 | 26 | crngringd 20118 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Ring) |
| 28 | 27 | ringcmnd 20156 | . . . 4 ⊢ (𝜑 → ℂfld ∈ CMnd) |
| 29 | indf 32791 | . . . . . 6 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) | |
| 30 | 1, 2, 29 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1}) |
| 31 | 0cnd 11096 | . . . . . 6 ⊢ (𝜑 → 0 ∈ ℂ) | |
| 32 | 1cnd 11098 | . . . . . 6 ⊢ (𝜑 → 1 ∈ ℂ) | |
| 33 | 31, 32 | prssd 4771 | . . . . 5 ⊢ (𝜑 → {0, 1} ⊆ ℂ) |
| 34 | 30, 33 | fssd 6663 | . . . 4 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶ℂ) |
| 35 | indsupp 32803 | . . . . . 6 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) | |
| 36 | 1, 2, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴) |
| 37 | 36 | eqimssd 3988 | . . . 4 ⊢ (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) ⊆ 𝐴) |
| 38 | gsumind.3 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 39 | 1, 2, 38 | indfsd 32804 | . . . 4 ⊢ (𝜑 → ((𝟭‘𝑂)‘𝐴) finSupp 0) |
| 40 | 22, 23, 28, 1, 34, 37, 39 | gsumres 19779 | . . 3 ⊢ (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg ((𝟭‘𝑂)‘𝐴))) |
| 41 | 26 | crnggrpd 20119 | . . . . 5 ⊢ (𝜑 → ℂfld ∈ Grp) |
| 42 | 41 | grpmndd 18812 | . . . 4 ⊢ (𝜑 → ℂfld ∈ Mnd) |
| 43 | eqid 2729 | . . . . 5 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
| 44 | 22, 43 | gsumconst 19800 | . . . 4 ⊢ ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 1 ∈ ℂ) → (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 45 | 42, 38, 32, 44 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (ℂfld Σg (𝑥 ∈ 𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 46 | 21, 40, 45 | 3eqtr3d 2772 | . 2 ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = ((♯‘𝐴)(.g‘ℂfld)1)) |
| 47 | hashcl 14251 | . . . . 5 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 48 | 38, 47 | syl 17 | . . . 4 ⊢ (𝜑 → (♯‘𝐴) ∈ ℕ0) |
| 49 | 48 | nn0zd 12485 | . . 3 ⊢ (𝜑 → (♯‘𝐴) ∈ ℤ) |
| 50 | cnfldmulg 21294 | . . 3 ⊢ (((♯‘𝐴) ∈ ℤ ∧ 1 ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1)) | |
| 51 | 49, 32, 50 | syl2anc 584 | . 2 ⊢ (𝜑 → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1)) |
| 52 | 48 | nn0cnd 12435 | . . 3 ⊢ (𝜑 → (♯‘𝐴) ∈ ℂ) |
| 53 | 52 | mulridd 11120 | . 2 ⊢ (𝜑 → ((♯‘𝐴) · 1) = (♯‘𝐴)) |
| 54 | 46, 51, 53 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3896 ∪ cun 3897 ∩ cin 3898 ⊆ wss 3899 ∅c0 4280 {csn 4573 {cpr 4575 ↦ cmpt 5169 × cxp 5611 ↾ cres 5615 Fn wfn 6471 ⟶wf 6472 ‘cfv 6476 (class class class)co 7340 supp csupp 8084 Fincfn 8863 ℂcc 10995 0cc0 10997 1c1 10998 · cmul 11002 ℕ0cn0 12372 ℤcz 12459 ♯chash 14225 Σg cgsu 17331 Mndcmnd 18595 .gcmg 18933 Fieldcfield 20599 ℂfldccnfld 21245 𝟭cind 32786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 ax-addf 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-tpos 8150 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-er 8616 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-div 11766 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-fz 13399 df-fzo 13546 df-seq 13897 df-hash 14226 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-starv 17163 df-tset 17167 df-ple 17168 df-ds 17170 df-unif 17171 df-0g 17332 df-gsum 17333 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-grp 18802 df-minusg 18803 df-mulg 18934 df-cntz 19183 df-cmn 19648 df-abl 19649 df-mgp 20013 df-rng 20025 df-ur 20054 df-ring 20107 df-cring 20108 df-oppr 20209 df-dvdsr 20229 df-unit 20230 df-invr 20260 df-dvr 20273 df-drng 20600 df-field 20601 df-cnfld 21246 df-ind 32787 |
| This theorem is referenced by: esplymhp 33557 |
| Copyright terms: Public domain | W3C validator |