Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumind Structured version   Visualization version   GIF version

Theorem gsumind 33317
Description: The group sum of an indicator function of the set 𝐴 gives the size of 𝐴. (Contributed by Thierry Arnoux, 18-Jan-2026.)
Hypotheses
Ref Expression
gsumind.1 (𝜑𝑂𝑉)
gsumind.2 (𝜑𝐴𝑂)
gsumind.3 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
gsumind (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴))

Proof of Theorem gsumind
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 gsumind.1 . . . . . . 7 (𝜑𝑂𝑉)
2 gsumind.2 . . . . . . 7 (𝜑𝐴𝑂)
3 indval2 32842 . . . . . . 7 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
41, 2, 3syl2anc 584 . . . . . 6 (𝜑 → ((𝟭‘𝑂)‘𝐴) = ((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})))
54reseq1d 5932 . . . . 5 (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})) ↾ 𝐴))
6 1ex 11114 . . . . . . . . 9 1 ∈ V
76fconst 6715 . . . . . . . 8 (𝐴 × {1}):𝐴⟶{1}
87a1i 11 . . . . . . 7 (𝜑 → (𝐴 × {1}):𝐴⟶{1})
98ffnd 6658 . . . . . 6 (𝜑 → (𝐴 × {1}) Fn 𝐴)
10 c0ex 11112 . . . . . . . . 9 0 ∈ V
1110fconst 6715 . . . . . . . 8 ((𝑂𝐴) × {0}):(𝑂𝐴)⟶{0}
1211a1i 11 . . . . . . 7 (𝜑 → ((𝑂𝐴) × {0}):(𝑂𝐴)⟶{0})
1312ffnd 6658 . . . . . 6 (𝜑 → ((𝑂𝐴) × {0}) Fn (𝑂𝐴))
14 disjdif 4421 . . . . . . 7 (𝐴 ∩ (𝑂𝐴)) = ∅
1514a1i 11 . . . . . 6 (𝜑 → (𝐴 ∩ (𝑂𝐴)) = ∅)
16 fnunres1 6599 . . . . . 6 (((𝐴 × {1}) Fn 𝐴 ∧ ((𝑂𝐴) × {0}) Fn (𝑂𝐴) ∧ (𝐴 ∩ (𝑂𝐴)) = ∅) → (((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1}))
179, 13, 15, 16syl3anc 1373 . . . . 5 (𝜑 → (((𝐴 × {1}) ∪ ((𝑂𝐴) × {0})) ↾ 𝐴) = (𝐴 × {1}))
18 fconstmpt 5681 . . . . . 6 (𝐴 × {1}) = (𝑥𝐴 ↦ 1)
1918a1i 11 . . . . 5 (𝜑 → (𝐴 × {1}) = (𝑥𝐴 ↦ 1))
205, 17, 193eqtrd 2770 . . . 4 (𝜑 → (((𝟭‘𝑂)‘𝐴) ↾ 𝐴) = (𝑥𝐴 ↦ 1))
2120oveq2d 7368 . . 3 (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg (𝑥𝐴 ↦ 1)))
22 cnfldbas 21301 . . . 4 ℂ = (Base‘ℂfld)
23 cnfld0 21335 . . . 4 0 = (0g‘ℂfld)
24 cnfldfld 33314 . . . . . . . 8 fld ∈ Field
2524a1i 11 . . . . . . 7 (𝜑 → ℂfld ∈ Field)
2625fldcrngd 20663 . . . . . 6 (𝜑 → ℂfld ∈ CRing)
2726crngringd 20170 . . . . 5 (𝜑 → ℂfld ∈ Ring)
2827ringcmnd 20208 . . . 4 (𝜑 → ℂfld ∈ CMnd)
29 indf 32843 . . . . . 6 ((𝑂𝑉𝐴𝑂) → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
301, 2, 29syl2anc 584 . . . . 5 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶{0, 1})
31 0cnd 11111 . . . . . 6 (𝜑 → 0 ∈ ℂ)
32 1cnd 11113 . . . . . 6 (𝜑 → 1 ∈ ℂ)
3331, 32prssd 4773 . . . . 5 (𝜑 → {0, 1} ⊆ ℂ)
3430, 33fssd 6674 . . . 4 (𝜑 → ((𝟭‘𝑂)‘𝐴):𝑂⟶ℂ)
35 indsupp 32855 . . . . . 6 ((𝑂𝑉𝐴𝑂) → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴)
361, 2, 35syl2anc 584 . . . . 5 (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) = 𝐴)
3736eqimssd 3986 . . . 4 (𝜑 → (((𝟭‘𝑂)‘𝐴) supp 0) ⊆ 𝐴)
38 gsumind.3 . . . . 5 (𝜑𝐴 ∈ Fin)
391, 2, 38indfsd 32856 . . . 4 (𝜑 → ((𝟭‘𝑂)‘𝐴) finSupp 0)
4022, 23, 28, 1, 34, 37, 39gsumres 19831 . . 3 (𝜑 → (ℂfld Σg (((𝟭‘𝑂)‘𝐴) ↾ 𝐴)) = (ℂfld Σg ((𝟭‘𝑂)‘𝐴)))
4126crnggrpd 20171 . . . . 5 (𝜑 → ℂfld ∈ Grp)
4241grpmndd 18865 . . . 4 (𝜑 → ℂfld ∈ Mnd)
43 eqid 2731 . . . . 5 (.g‘ℂfld) = (.g‘ℂfld)
4422, 43gsumconst 19852 . . . 4 ((ℂfld ∈ Mnd ∧ 𝐴 ∈ Fin ∧ 1 ∈ ℂ) → (ℂfld Σg (𝑥𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1))
4542, 38, 32, 44syl3anc 1373 . . 3 (𝜑 → (ℂfld Σg (𝑥𝐴 ↦ 1)) = ((♯‘𝐴)(.g‘ℂfld)1))
4621, 40, 453eqtr3d 2774 . 2 (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = ((♯‘𝐴)(.g‘ℂfld)1))
47 hashcl 14269 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
4838, 47syl 17 . . . 4 (𝜑 → (♯‘𝐴) ∈ ℕ0)
4948nn0zd 12500 . . 3 (𝜑 → (♯‘𝐴) ∈ ℤ)
50 cnfldmulg 21346 . . 3 (((♯‘𝐴) ∈ ℤ ∧ 1 ∈ ℂ) → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1))
5149, 32, 50syl2anc 584 . 2 (𝜑 → ((♯‘𝐴)(.g‘ℂfld)1) = ((♯‘𝐴) · 1))
5248nn0cnd 12450 . . 3 (𝜑 → (♯‘𝐴) ∈ ℂ)
5352mulridd 11135 . 2 (𝜑 → ((♯‘𝐴) · 1) = (♯‘𝐴))
5446, 51, 533eqtrd 2770 1 (𝜑 → (ℂfld Σg ((𝟭‘𝑂)‘𝐴)) = (♯‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  cdif 3894  cun 3895  cin 3896  wss 3897  c0 4282  {csn 4575  {cpr 4577  cmpt 5174   × cxp 5617  cres 5621   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352   supp csupp 8096  Fincfn 8875  cc 11010  0cc0 11012  1c1 11013   · cmul 11017  0cn0 12387  cz 12474  chash 14243   Σg cgsu 17350  Mndcmnd 18648  .gcmg 18986  Fieldcfield 20651  fldccnfld 21297  𝟭cind 32838
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-div 11781  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-0g 17351  df-gsum 17352  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-grp 18855  df-minusg 18856  df-mulg 18987  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-drng 20652  df-field 20653  df-cnfld 21298  df-ind 32839
This theorem is referenced by:  esplymhp  33596
  Copyright terms: Public domain W3C validator