| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indfsid | Structured version Visualization version GIF version | ||
| Description: Conditions for a function to be an indicator function. (Contributed by Thierry Arnoux, 18-Jan-2026.) |
| Ref | Expression |
|---|---|
| indfsid.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| indfsid.2 | ⊢ (𝜑 → 𝐹:𝑂⟶{0, 1}) |
| Ref | Expression |
|---|---|
| indfsid | ⊢ (𝜑 → 𝐹 = ((𝟭‘𝑂)‘(𝐹 supp 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indfsid.1 | . . 3 ⊢ (𝜑 → 𝑂 ∈ 𝑉) | |
| 2 | indfsid.2 | . . 3 ⊢ (𝜑 → 𝐹:𝑂⟶{0, 1}) | |
| 3 | indpreima 32853 | . . 3 ⊢ ((𝑂 ∈ 𝑉 ∧ 𝐹:𝑂⟶{0, 1}) → 𝐹 = ((𝟭‘𝑂)‘(◡𝐹 “ {1}))) | |
| 4 | 1, 2, 3 | syl2anc 584 | . 2 ⊢ (𝜑 → 𝐹 = ((𝟭‘𝑂)‘(◡𝐹 “ {1}))) |
| 5 | c0ex 11112 | . . . . . 6 ⊢ 0 ∈ V | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → 0 ∈ V) |
| 7 | fsuppeq 8111 | . . . . . 6 ⊢ ((𝑂 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹:𝑂⟶{0, 1} → (𝐹 supp 0) = (◡𝐹 “ ({0, 1} ∖ {0})))) | |
| 8 | 7 | imp 406 | . . . . 5 ⊢ (((𝑂 ∈ 𝑉 ∧ 0 ∈ V) ∧ 𝐹:𝑂⟶{0, 1}) → (𝐹 supp 0) = (◡𝐹 “ ({0, 1} ∖ {0}))) |
| 9 | 1, 6, 2, 8 | syl21anc 837 | . . . 4 ⊢ (𝜑 → (𝐹 supp 0) = (◡𝐹 “ ({0, 1} ∖ {0}))) |
| 10 | 0ne1 12202 | . . . . . 6 ⊢ 0 ≠ 1 | |
| 11 | difprsn1 4751 | . . . . . 6 ⊢ (0 ≠ 1 → ({0, 1} ∖ {0}) = {1}) | |
| 12 | 10, 11 | mp1i 13 | . . . . 5 ⊢ (𝜑 → ({0, 1} ∖ {0}) = {1}) |
| 13 | 12 | imaeq2d 6014 | . . . 4 ⊢ (𝜑 → (◡𝐹 “ ({0, 1} ∖ {0})) = (◡𝐹 “ {1})) |
| 14 | 9, 13 | eqtrd 2766 | . . 3 ⊢ (𝜑 → (𝐹 supp 0) = (◡𝐹 “ {1})) |
| 15 | 14 | fveq2d 6832 | . 2 ⊢ (𝜑 → ((𝟭‘𝑂)‘(𝐹 supp 0)) = ((𝟭‘𝑂)‘(◡𝐹 “ {1}))) |
| 16 | 4, 15 | eqtr4d 2769 | 1 ⊢ (𝜑 → 𝐹 = ((𝟭‘𝑂)‘(𝐹 supp 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 {csn 4575 {cpr 4577 ◡ccnv 5618 “ cima 5622 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 supp csupp 8096 0cc0 11012 1c1 11013 𝟭cind 32838 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-i2m1 11080 ax-1ne0 11081 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-oprab 7356 df-mpo 7357 df-supp 8097 df-ind 32839 |
| This theorem is referenced by: esplymhp 33596 esplyfv1 33597 |
| Copyright terms: Public domain | W3C validator |