![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpssr 10339. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
Ref | Expression |
---|---|
infpssrlem2 | ⊢ (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (◡𝐹‘(𝐺‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8464 | . 2 ⊢ (𝑀 ∈ ω → ((rec(◡𝐹, 𝐶) ↾ ω)‘suc 𝑀) = (◡𝐹‘((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀))) | |
2 | infpssrlem.e | . . 3 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
3 | 2 | fveq1i 6903 | . 2 ⊢ (𝐺‘suc 𝑀) = ((rec(◡𝐹, 𝐶) ↾ ω)‘suc 𝑀) |
4 | 2 | fveq1i 6903 | . . 3 ⊢ (𝐺‘𝑀) = ((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀) |
5 | 4 | fveq2i 6905 | . 2 ⊢ (◡𝐹‘(𝐺‘𝑀)) = (◡𝐹‘((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀)) |
6 | 1, 3, 5 | 3eqtr4g 2793 | 1 ⊢ (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (◡𝐹‘(𝐺‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3946 ⊆ wss 3949 ◡ccnv 5681 ↾ cres 5684 suc csuc 6376 –1-1-onto→wf1o 6552 ‘cfv 6553 ωcom 7876 reccrdg 8436 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 |
This theorem is referenced by: infpssrlem3 10336 infpssrlem4 10337 |
Copyright terms: Public domain | W3C validator |