MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem2 Structured version   Visualization version   GIF version

Theorem infpssrlem2 10061
Description: Lemma for infpssr 10065. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem2 (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (𝐹‘(𝐺𝑀)))

Proof of Theorem infpssrlem2
StepHypRef Expression
1 frsuc 8259 . 2 (𝑀 ∈ ω → ((rec(𝐹, 𝐶) ↾ ω)‘suc 𝑀) = (𝐹‘((rec(𝐹, 𝐶) ↾ ω)‘𝑀)))
2 infpssrlem.e . . 3 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
32fveq1i 6772 . 2 (𝐺‘suc 𝑀) = ((rec(𝐹, 𝐶) ↾ ω)‘suc 𝑀)
42fveq1i 6772 . . 3 (𝐺𝑀) = ((rec(𝐹, 𝐶) ↾ ω)‘𝑀)
54fveq2i 6774 . 2 (𝐹‘(𝐺𝑀)) = (𝐹‘((rec(𝐹, 𝐶) ↾ ω)‘𝑀))
61, 3, 53eqtr4g 2805 1 (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (𝐹‘(𝐺𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2110  cdif 3889  wss 3892  ccnv 5589  cres 5592  suc csuc 6267  1-1-ontowf1o 6431  cfv 6432  ωcom 7706  reccrdg 8231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7582
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-ov 7274  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232
This theorem is referenced by:  infpssrlem3  10062  infpssrlem4  10063
  Copyright terms: Public domain W3C validator