![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem2 | Structured version Visualization version GIF version |
Description: Lemma for infpssr 10299. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
Ref | Expression |
---|---|
infpssrlem2 | ⊢ (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (◡𝐹‘(𝐺‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frsuc 8432 | . 2 ⊢ (𝑀 ∈ ω → ((rec(◡𝐹, 𝐶) ↾ ω)‘suc 𝑀) = (◡𝐹‘((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀))) | |
2 | infpssrlem.e | . . 3 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
3 | 2 | fveq1i 6882 | . 2 ⊢ (𝐺‘suc 𝑀) = ((rec(◡𝐹, 𝐶) ↾ ω)‘suc 𝑀) |
4 | 2 | fveq1i 6882 | . . 3 ⊢ (𝐺‘𝑀) = ((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀) |
5 | 4 | fveq2i 6884 | . 2 ⊢ (◡𝐹‘(𝐺‘𝑀)) = (◡𝐹‘((rec(◡𝐹, 𝐶) ↾ ω)‘𝑀)) |
6 | 1, 3, 5 | 3eqtr4g 2789 | 1 ⊢ (𝑀 ∈ ω → (𝐺‘suc 𝑀) = (◡𝐹‘(𝐺‘𝑀))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ∖ cdif 3937 ⊆ wss 3940 ◡ccnv 5665 ↾ cres 5668 suc csuc 6356 –1-1-onto→wf1o 6532 ‘cfv 6533 ωcom 7848 reccrdg 8404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-ov 7404 df-om 7849 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 |
This theorem is referenced by: infpssrlem3 10296 infpssrlem4 10297 |
Copyright terms: Public domain | W3C validator |