MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem3 Structured version   Visualization version   GIF version

Theorem infpssrlem3 10061
Description: Lemma for infpssr 10064. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem3 (𝜑𝐺:ω⟶𝐴)

Proof of Theorem infpssrlem3
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8266 . . . 4 (rec(𝐹, 𝐶) ↾ ω) Fn ω
2 infpssrlem.e . . . . 5 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
32fneq1i 6530 . . . 4 (𝐺 Fn ω ↔ (rec(𝐹, 𝐶) ↾ ω) Fn ω)
41, 3mpbir 230 . . 3 𝐺 Fn ω
54a1i 11 . 2 (𝜑𝐺 Fn ω)
6 fveq2 6774 . . . . . 6 (𝑐 = ∅ → (𝐺𝑐) = (𝐺‘∅))
76eleq1d 2823 . . . . 5 (𝑐 = ∅ → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴))
8 fveq2 6774 . . . . . 6 (𝑐 = 𝑏 → (𝐺𝑐) = (𝐺𝑏))
98eleq1d 2823 . . . . 5 (𝑐 = 𝑏 → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺𝑏) ∈ 𝐴))
10 fveq2 6774 . . . . . 6 (𝑐 = suc 𝑏 → (𝐺𝑐) = (𝐺‘suc 𝑏))
1110eleq1d 2823 . . . . 5 (𝑐 = suc 𝑏 → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴))
12 infpssrlem.a . . . . . . 7 (𝜑𝐵𝐴)
13 infpssrlem.c . . . . . . 7 (𝜑𝐹:𝐵1-1-onto𝐴)
14 infpssrlem.d . . . . . . 7 (𝜑𝐶 ∈ (𝐴𝐵))
1512, 13, 14, 2infpssrlem1 10059 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
1614eldifad 3899 . . . . . 6 (𝜑𝐶𝐴)
1715, 16eqeltrd 2839 . . . . 5 (𝜑 → (𝐺‘∅) ∈ 𝐴)
1812adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → 𝐵𝐴)
19 f1ocnv 6728 . . . . . . . . . 10 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
20 f1of 6716 . . . . . . . . . 10 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2113, 19, 203syl 18 . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
2221ffvelrnda 6961 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐹‘(𝐺𝑏)) ∈ 𝐵)
2318, 22sseldd 3922 . . . . . . 7 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐹‘(𝐺𝑏)) ∈ 𝐴)
2412, 13, 14, 2infpssrlem2 10060 . . . . . . . 8 (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (𝐹‘(𝐺𝑏)))
2524eleq1d 2823 . . . . . . 7 (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (𝐹‘(𝐺𝑏)) ∈ 𝐴))
2623, 25syl5ibr 245 . . . . . 6 (𝑏 ∈ ω → ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴))
2726expd 416 . . . . 5 (𝑏 ∈ ω → (𝜑 → ((𝐺𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴)))
287, 9, 11, 17, 27finds2 7747 . . . 4 (𝑐 ∈ ω → (𝜑 → (𝐺𝑐) ∈ 𝐴))
2928com12 32 . . 3 (𝜑 → (𝑐 ∈ ω → (𝐺𝑐) ∈ 𝐴))
3029ralrimiv 3102 . 2 (𝜑 → ∀𝑐 ∈ ω (𝐺𝑐) ∈ 𝐴)
31 ffnfv 6992 . 2 (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺𝑐) ∈ 𝐴))
325, 30, 31sylanbrc 583 1 (𝜑𝐺:ω⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cdif 3884  wss 3887  c0 4256  ccnv 5588  cres 5591  suc csuc 6268   Fn wfn 6428  wf 6429  1-1-ontowf1o 6432  cfv 6433  ωcom 7712  reccrdg 8240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241
This theorem is referenced by:  infpssrlem4  10062  infpssrlem5  10063
  Copyright terms: Public domain W3C validator