| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for infpssr 10261. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
| infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
| infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| infpssrlem3 | ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8403 | . . . 4 ⊢ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω | |
| 2 | infpssrlem.e | . . . . 5 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6615 | . . . 4 ⊢ (𝐺 Fn ω ↔ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝐺 Fn ω |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 Fn ω) |
| 6 | fveq2 6858 | . . . . . 6 ⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) | |
| 7 | 6 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴)) |
| 8 | fveq2 6858 | . . . . . 6 ⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) | |
| 9 | 8 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘𝑏) ∈ 𝐴)) |
| 10 | fveq2 6858 | . . . . . 6 ⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) | |
| 11 | 10 | eleq1d 2813 | . . . . 5 ⊢ (𝑐 = suc 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴)) |
| 12 | infpssrlem.a | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 13 | infpssrlem.c | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) | |
| 14 | infpssrlem.d | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
| 15 | 12, 13, 14, 2 | infpssrlem1 10256 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| 16 | 14 | eldifad 3926 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 17 | 15, 16 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ 𝐴) |
| 18 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 19 | f1ocnv 6812 | . . . . . . . . . 10 ⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) | |
| 20 | f1of 6800 | . . . . . . . . . 10 ⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) | |
| 21 | 13, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
| 22 | 21 | ffvelcdmda 7056 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐵) |
| 23 | 18, 22 | sseldd 3947 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴) |
| 24 | 12, 13, 14, 2 | infpssrlem2 10257 | . . . . . . . 8 ⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
| 25 | 24 | eleq1d 2813 | . . . . . . 7 ⊢ (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴)) |
| 26 | 23, 25 | imbitrrid 246 | . . . . . 6 ⊢ (𝑏 ∈ ω → ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴)) |
| 27 | 26 | expd 415 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝜑 → ((𝐺‘𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴))) |
| 28 | 7, 9, 11, 17, 27 | finds2 7874 | . . . 4 ⊢ (𝑐 ∈ ω → (𝜑 → (𝐺‘𝑐) ∈ 𝐴)) |
| 29 | 28 | com12 32 | . . 3 ⊢ (𝜑 → (𝑐 ∈ ω → (𝐺‘𝑐) ∈ 𝐴)) |
| 30 | 29 | ralrimiv 3124 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴) |
| 31 | ffnfv 7091 | . 2 ⊢ (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴)) | |
| 32 | 5, 30, 31 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∖ cdif 3911 ⊆ wss 3914 ∅c0 4296 ◡ccnv 5637 ↾ cres 5640 suc csuc 6334 Fn wfn 6506 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 ωcom 7842 reccrdg 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 |
| This theorem is referenced by: infpssrlem4 10259 infpssrlem5 10260 |
| Copyright terms: Public domain | W3C validator |