MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssrlem3 Structured version   Visualization version   GIF version

Theorem infpssrlem3 10319
Description: Lemma for infpssr 10322. (Contributed by Stefan O'Rear, 30-Oct-2014.)
Hypotheses
Ref Expression
infpssrlem.a (𝜑𝐵𝐴)
infpssrlem.c (𝜑𝐹:𝐵1-1-onto𝐴)
infpssrlem.d (𝜑𝐶 ∈ (𝐴𝐵))
infpssrlem.e 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
Assertion
Ref Expression
infpssrlem3 (𝜑𝐺:ω⟶𝐴)

Proof of Theorem infpssrlem3
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frfnom 8449 . . . 4 (rec(𝐹, 𝐶) ↾ ω) Fn ω
2 infpssrlem.e . . . . 5 𝐺 = (rec(𝐹, 𝐶) ↾ ω)
32fneq1i 6635 . . . 4 (𝐺 Fn ω ↔ (rec(𝐹, 𝐶) ↾ ω) Fn ω)
41, 3mpbir 231 . . 3 𝐺 Fn ω
54a1i 11 . 2 (𝜑𝐺 Fn ω)
6 fveq2 6876 . . . . . 6 (𝑐 = ∅ → (𝐺𝑐) = (𝐺‘∅))
76eleq1d 2819 . . . . 5 (𝑐 = ∅ → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴))
8 fveq2 6876 . . . . . 6 (𝑐 = 𝑏 → (𝐺𝑐) = (𝐺𝑏))
98eleq1d 2819 . . . . 5 (𝑐 = 𝑏 → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺𝑏) ∈ 𝐴))
10 fveq2 6876 . . . . . 6 (𝑐 = suc 𝑏 → (𝐺𝑐) = (𝐺‘suc 𝑏))
1110eleq1d 2819 . . . . 5 (𝑐 = suc 𝑏 → ((𝐺𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴))
12 infpssrlem.a . . . . . . 7 (𝜑𝐵𝐴)
13 infpssrlem.c . . . . . . 7 (𝜑𝐹:𝐵1-1-onto𝐴)
14 infpssrlem.d . . . . . . 7 (𝜑𝐶 ∈ (𝐴𝐵))
1512, 13, 14, 2infpssrlem1 10317 . . . . . 6 (𝜑 → (𝐺‘∅) = 𝐶)
1614eldifad 3938 . . . . . 6 (𝜑𝐶𝐴)
1715, 16eqeltrd 2834 . . . . 5 (𝜑 → (𝐺‘∅) ∈ 𝐴)
1812adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → 𝐵𝐴)
19 f1ocnv 6830 . . . . . . . . . 10 (𝐹:𝐵1-1-onto𝐴𝐹:𝐴1-1-onto𝐵)
20 f1of 6818 . . . . . . . . . 10 (𝐹:𝐴1-1-onto𝐵𝐹:𝐴𝐵)
2113, 19, 203syl 18 . . . . . . . . 9 (𝜑𝐹:𝐴𝐵)
2221ffvelcdmda 7074 . . . . . . . 8 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐹‘(𝐺𝑏)) ∈ 𝐵)
2318, 22sseldd 3959 . . . . . . 7 ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐹‘(𝐺𝑏)) ∈ 𝐴)
2412, 13, 14, 2infpssrlem2 10318 . . . . . . . 8 (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (𝐹‘(𝐺𝑏)))
2524eleq1d 2819 . . . . . . 7 (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (𝐹‘(𝐺𝑏)) ∈ 𝐴))
2623, 25imbitrrid 246 . . . . . 6 (𝑏 ∈ ω → ((𝜑 ∧ (𝐺𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴))
2726expd 415 . . . . 5 (𝑏 ∈ ω → (𝜑 → ((𝐺𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴)))
287, 9, 11, 17, 27finds2 7894 . . . 4 (𝑐 ∈ ω → (𝜑 → (𝐺𝑐) ∈ 𝐴))
2928com12 32 . . 3 (𝜑 → (𝑐 ∈ ω → (𝐺𝑐) ∈ 𝐴))
3029ralrimiv 3131 . 2 (𝜑 → ∀𝑐 ∈ ω (𝐺𝑐) ∈ 𝐴)
31 ffnfv 7109 . 2 (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺𝑐) ∈ 𝐴))
325, 30, 31sylanbrc 583 1 (𝜑𝐺:ω⟶𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  cdif 3923  wss 3926  c0 4308  ccnv 5653  cres 5656  suc csuc 6354   Fn wfn 6526  wf 6527  1-1-ontowf1o 6530  cfv 6531  ωcom 7861  reccrdg 8423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424
This theorem is referenced by:  infpssrlem4  10320  infpssrlem5  10321
  Copyright terms: Public domain W3C validator