| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infpssrlem3 | Structured version Visualization version GIF version | ||
| Description: Lemma for infpssr 10199. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
| Ref | Expression |
|---|---|
| infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
| infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
| infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
| Ref | Expression |
|---|---|
| infpssrlem3 | ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frfnom 8354 | . . . 4 ⊢ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω | |
| 2 | infpssrlem.e | . . . . 5 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
| 3 | 2 | fneq1i 6578 | . . . 4 ⊢ (𝐺 Fn ω ↔ (rec(◡𝐹, 𝐶) ↾ ω) Fn ω) |
| 4 | 1, 3 | mpbir 231 | . . 3 ⊢ 𝐺 Fn ω |
| 5 | 4 | a1i 11 | . 2 ⊢ (𝜑 → 𝐺 Fn ω) |
| 6 | fveq2 6822 | . . . . . 6 ⊢ (𝑐 = ∅ → (𝐺‘𝑐) = (𝐺‘∅)) | |
| 7 | 6 | eleq1d 2816 | . . . . 5 ⊢ (𝑐 = ∅ → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘∅) ∈ 𝐴)) |
| 8 | fveq2 6822 | . . . . . 6 ⊢ (𝑐 = 𝑏 → (𝐺‘𝑐) = (𝐺‘𝑏)) | |
| 9 | 8 | eleq1d 2816 | . . . . 5 ⊢ (𝑐 = 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘𝑏) ∈ 𝐴)) |
| 10 | fveq2 6822 | . . . . . 6 ⊢ (𝑐 = suc 𝑏 → (𝐺‘𝑐) = (𝐺‘suc 𝑏)) | |
| 11 | 10 | eleq1d 2816 | . . . . 5 ⊢ (𝑐 = suc 𝑏 → ((𝐺‘𝑐) ∈ 𝐴 ↔ (𝐺‘suc 𝑏) ∈ 𝐴)) |
| 12 | infpssrlem.a | . . . . . . 7 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 13 | infpssrlem.c | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) | |
| 14 | infpssrlem.d | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
| 15 | 12, 13, 14, 2 | infpssrlem1 10194 | . . . . . 6 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
| 16 | 14 | eldifad 3909 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 17 | 15, 16 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → (𝐺‘∅) ∈ 𝐴) |
| 18 | 12 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → 𝐵 ⊆ 𝐴) |
| 19 | f1ocnv 6775 | . . . . . . . . . 10 ⊢ (𝐹:𝐵–1-1-onto→𝐴 → ◡𝐹:𝐴–1-1-onto→𝐵) | |
| 20 | f1of 6763 | . . . . . . . . . 10 ⊢ (◡𝐹:𝐴–1-1-onto→𝐵 → ◡𝐹:𝐴⟶𝐵) | |
| 21 | 13, 19, 20 | 3syl 18 | . . . . . . . . 9 ⊢ (𝜑 → ◡𝐹:𝐴⟶𝐵) |
| 22 | 21 | ffvelcdmda 7017 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐵) |
| 23 | 18, 22 | sseldd 3930 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴) |
| 24 | 12, 13, 14, 2 | infpssrlem2 10195 | . . . . . . . 8 ⊢ (𝑏 ∈ ω → (𝐺‘suc 𝑏) = (◡𝐹‘(𝐺‘𝑏))) |
| 25 | 24 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑏 ∈ ω → ((𝐺‘suc 𝑏) ∈ 𝐴 ↔ (◡𝐹‘(𝐺‘𝑏)) ∈ 𝐴)) |
| 26 | 23, 25 | imbitrrid 246 | . . . . . 6 ⊢ (𝑏 ∈ ω → ((𝜑 ∧ (𝐺‘𝑏) ∈ 𝐴) → (𝐺‘suc 𝑏) ∈ 𝐴)) |
| 27 | 26 | expd 415 | . . . . 5 ⊢ (𝑏 ∈ ω → (𝜑 → ((𝐺‘𝑏) ∈ 𝐴 → (𝐺‘suc 𝑏) ∈ 𝐴))) |
| 28 | 7, 9, 11, 17, 27 | finds2 7828 | . . . 4 ⊢ (𝑐 ∈ ω → (𝜑 → (𝐺‘𝑐) ∈ 𝐴)) |
| 29 | 28 | com12 32 | . . 3 ⊢ (𝜑 → (𝑐 ∈ ω → (𝐺‘𝑐) ∈ 𝐴)) |
| 30 | 29 | ralrimiv 3123 | . 2 ⊢ (𝜑 → ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴) |
| 31 | ffnfv 7052 | . 2 ⊢ (𝐺:ω⟶𝐴 ↔ (𝐺 Fn ω ∧ ∀𝑐 ∈ ω (𝐺‘𝑐) ∈ 𝐴)) | |
| 32 | 5, 30, 31 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐺:ω⟶𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4280 ◡ccnv 5613 ↾ cres 5616 suc csuc 6308 Fn wfn 6476 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 ωcom 7796 reccrdg 8328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 |
| This theorem is referenced by: infpssrlem4 10197 infpssrlem5 10198 |
| Copyright terms: Public domain | W3C validator |