![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssrlem1 | Structured version Visualization version GIF version |
Description: Lemma for infpssr 10309. (Contributed by Stefan O'Rear, 30-Oct-2014.) |
Ref | Expression |
---|---|
infpssrlem.a | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
infpssrlem.c | ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→𝐴) |
infpssrlem.d | ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) |
infpssrlem.e | ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) |
Ref | Expression |
---|---|
infpssrlem1 | ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infpssrlem.e | . . 3 ⊢ 𝐺 = (rec(◡𝐹, 𝐶) ↾ ω) | |
2 | 1 | fveq1i 6892 | . 2 ⊢ (𝐺‘∅) = ((rec(◡𝐹, 𝐶) ↾ ω)‘∅) |
3 | infpssrlem.d | . . 3 ⊢ (𝜑 → 𝐶 ∈ (𝐴 ∖ 𝐵)) | |
4 | fr0g 8442 | . . 3 ⊢ (𝐶 ∈ (𝐴 ∖ 𝐵) → ((rec(◡𝐹, 𝐶) ↾ ω)‘∅) = 𝐶) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝜑 → ((rec(◡𝐹, 𝐶) ↾ ω)‘∅) = 𝐶) |
6 | 2, 5 | eqtrid 2783 | 1 ⊢ (𝜑 → (𝐺‘∅) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∖ cdif 3945 ⊆ wss 3948 ∅c0 4322 ◡ccnv 5675 ↾ cres 5678 –1-1-onto→wf1o 6542 ‘cfv 6543 ωcom 7859 reccrdg 8415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 |
This theorem is referenced by: infpssrlem3 10306 infpssrlem4 10307 |
Copyright terms: Public domain | W3C validator |