MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem0 Structured version   Visualization version   GIF version

Theorem initoeu2lem0 17958
Description: Lemma 0 for initoeu2 17961. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem0 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))

Proof of Theorem initoeu2lem0
StepHypRef Expression
1 3simpa 1149 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))))
2 simp3 1139 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
32eqcomd 2739 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
4 initoeu2lem.x . . 3 𝑋 = (Base‘𝐶)
5 eqid 2733 . . 3 (Inv‘𝐶) = (Inv‘𝐶)
6 initoeu1.c . . . . 5 (𝜑𝐶 ∈ Cat)
76adantr 482 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
87adantr 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐶 ∈ Cat)
9 simpr1 1195 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
109adantr 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐴𝑋)
11 simpr2 1196 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
1211adantr 482 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐵𝑋)
13 simplr3 1218 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐷𝑋)
14 initoeu2lem.i . . . . . . . 8 𝐼 = (Iso‘𝐶)
1514oveqi 7416 . . . . . . 7 (𝐵𝐼𝐴) = (𝐵(Iso‘𝐶)𝐴)
1615eleq2i 2826 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) ↔ 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1716biimpi 215 . . . . 5 (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
18173ad2ant1 1134 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1918adantl 483 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
20 initoeu2lem.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
2120oveqi 7416 . . . . . . 7 (𝐵𝐻𝐷) = (𝐵(Hom ‘𝐶)𝐷)
2221eleq2i 2826 . . . . . 6 (𝐺 ∈ (𝐵𝐻𝐷) ↔ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2322biimpi 215 . . . . 5 (𝐺 ∈ (𝐵𝐻𝐷) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
24233ad2ant3 1136 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2524adantl 483 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
26 eqid 2733 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
27 initoeu2lem.o . . . 4 = (comp‘𝐶)
284, 26, 14, 7, 11, 9isohom 17718 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐵𝐼𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
2928sseld 3979 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3029com12 32 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
31303ad2ant1 1134 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3231impcom 409 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))
3320oveqi 7416 . . . . . . . 8 (𝐴𝐻𝐷) = (𝐴(Hom ‘𝐶)𝐷)
3433eleq2i 2826 . . . . . . 7 (𝐹 ∈ (𝐴𝐻𝐷) ↔ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3534biimpi 215 . . . . . 6 (𝐹 ∈ (𝐴𝐻𝐷) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
36353ad2ant2 1135 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3736adantl 483 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
384, 26, 27, 8, 12, 10, 13, 32, 37catcocl 17624 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵(Hom ‘𝐶)𝐷))
39 eqid 2733 . . 3 ((𝐵(Inv‘𝐶)𝐴)‘𝐾) = ((𝐵(Inv‘𝐶)𝐴)‘𝐾)
4027oveqi 7416 . . 3 (⟨𝐴, 𝐵 𝐷) = (⟨𝐴, 𝐵⟩(comp‘𝐶)𝐷)
414, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40rcaninv 17736 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
421, 3, 41sylc 65 1 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  cop 4632  cfv 6539  (class class class)co 7403  Basecbs 17139  Hom chom 17203  compcco 17204  Catccat 17603  Invcinv 17687  Isociso 17688  InitOcinito 17926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-id 5572  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7969  df-2nd 7970  df-cat 17607  df-cid 17608  df-sect 17689  df-inv 17690  df-iso 17691
This theorem is referenced by:  initoeu2lem1  17959
  Copyright terms: Public domain W3C validator