MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  initoeu2lem0 Structured version   Visualization version   GIF version

Theorem initoeu2lem0 17920
Description: Lemma 0 for initoeu2 17923. (Contributed by AV, 9-Apr-2020.)
Hypotheses
Ref Expression
initoeu1.c (𝜑𝐶 ∈ Cat)
initoeu1.a (𝜑𝐴 ∈ (InitO‘𝐶))
initoeu2lem.x 𝑋 = (Base‘𝐶)
initoeu2lem.h 𝐻 = (Hom ‘𝐶)
initoeu2lem.i 𝐼 = (Iso‘𝐶)
initoeu2lem.o = (comp‘𝐶)
Assertion
Ref Expression
initoeu2lem0 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))

Proof of Theorem initoeu2lem0
StepHypRef Expression
1 3simpa 1148 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))))
2 simp3 1138 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
32eqcomd 2737 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)))
4 initoeu2lem.x . . 3 𝑋 = (Base‘𝐶)
5 eqid 2731 . . 3 (Inv‘𝐶) = (Inv‘𝐶)
6 initoeu1.c . . . . 5 (𝜑𝐶 ∈ Cat)
76adantr 480 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐶 ∈ Cat)
87adantr 480 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐶 ∈ Cat)
9 simpr1 1195 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐴𝑋)
109adantr 480 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐴𝑋)
11 simpr2 1196 . . . 4 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐵𝑋)
1211adantr 480 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐵𝑋)
13 simplr3 1218 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐷𝑋)
14 initoeu2lem.i . . . . . . . 8 𝐼 = (Iso‘𝐶)
1514oveqi 7359 . . . . . . 7 (𝐵𝐼𝐴) = (𝐵(Iso‘𝐶)𝐴)
1615eleq2i 2823 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) ↔ 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1716biimpi 216 . . . . 5 (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
18173ad2ant1 1133 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
1918adantl 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴))
20 initoeu2lem.h . . . . . . . 8 𝐻 = (Hom ‘𝐶)
2120oveqi 7359 . . . . . . 7 (𝐵𝐻𝐷) = (𝐵(Hom ‘𝐶)𝐷)
2221eleq2i 2823 . . . . . 6 (𝐺 ∈ (𝐵𝐻𝐷) ↔ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2322biimpi 216 . . . . 5 (𝐺 ∈ (𝐵𝐻𝐷) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
24233ad2ant3 1135 . . . 4 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
2524adantl 481 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷))
26 eqid 2731 . . . 4 (Hom ‘𝐶) = (Hom ‘𝐶)
27 initoeu2lem.o . . . 4 = (comp‘𝐶)
284, 26, 14, 7, 11, 9isohom 17683 . . . . . . . 8 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐵𝐼𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴))
2928sseld 3928 . . . . . . 7 ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3029com12 32 . . . . . 6 (𝐾 ∈ (𝐵𝐼𝐴) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
31303ad2ant1 1133 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)))
3231impcom 407 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))
3320oveqi 7359 . . . . . . . 8 (𝐴𝐻𝐷) = (𝐴(Hom ‘𝐶)𝐷)
3433eleq2i 2823 . . . . . . 7 (𝐹 ∈ (𝐴𝐻𝐷) ↔ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3534biimpi 216 . . . . . 6 (𝐹 ∈ (𝐴𝐻𝐷) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
36353ad2ant2 1134 . . . . 5 ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
3736adantl 481 . . . 4 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷))
384, 26, 27, 8, 12, 10, 13, 32, 37catcocl 17591 . . 3 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → (𝐹(⟨𝐵, 𝐴 𝐷)𝐾) ∈ (𝐵(Hom ‘𝐶)𝐷))
39 eqid 2731 . . 3 ((𝐵(Inv‘𝐶)𝐴)‘𝐾) = ((𝐵(Inv‘𝐶)𝐴)‘𝐾)
4027oveqi 7359 . . 3 (⟨𝐴, 𝐵 𝐷) = (⟨𝐴, 𝐵⟩(comp‘𝐶)𝐷)
414, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40rcaninv 17701 . 2 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾)))
421, 3, 41sylc 65 1 (((𝜑 ∧ (𝐴𝑋𝐵𝑋𝐷𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(⟨𝐵, 𝐴 𝐷)𝐾)(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(⟨𝐴, 𝐵 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(⟨𝐵, 𝐴 𝐷)𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4579  cfv 6481  (class class class)co 7346  Basecbs 17120  Hom chom 17172  compcco 17173  Catccat 17570  Invcinv 17652  Isociso 17653  InitOcinito 17888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-cat 17574  df-cid 17575  df-sect 17654  df-inv 17655  df-iso 17656
This theorem is referenced by:  initoeu2lem1  17921
  Copyright terms: Public domain W3C validator