Proof of Theorem initoeu2lem0
| Step | Hyp | Ref
| Expression |
| 1 | | 3simpa 1148 |
. 2
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)))) |
| 2 | | simp3 1138 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) |
| 3 | 2 | eqcomd 2740 |
. 2
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) |
| 4 | | initoeu2lem.x |
. . 3
⊢ 𝑋 = (Base‘𝐶) |
| 5 | | eqid 2734 |
. . 3
⊢
(Inv‘𝐶) =
(Inv‘𝐶) |
| 6 | | initoeu1.c |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
| 7 | 6 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐶 ∈ Cat) |
| 8 | 7 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐶 ∈ Cat) |
| 9 | | simpr1 1194 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐴 ∈ 𝑋) |
| 10 | 9 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐴 ∈ 𝑋) |
| 11 | | simpr2 1195 |
. . . 4
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐵 ∈ 𝑋) |
| 12 | 11 | adantr 480 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐵 ∈ 𝑋) |
| 13 | | simplr3 1217 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐷 ∈ 𝑋) |
| 14 | | initoeu2lem.i |
. . . . . . . 8
⊢ 𝐼 = (Iso‘𝐶) |
| 15 | 14 | oveqi 7427 |
. . . . . . 7
⊢ (𝐵𝐼𝐴) = (𝐵(Iso‘𝐶)𝐴) |
| 16 | 15 | eleq2i 2825 |
. . . . . 6
⊢ (𝐾 ∈ (𝐵𝐼𝐴) ↔ 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 17 | 16 | biimpi 216 |
. . . . 5
⊢ (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 18 | 17 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 19 | 18 | adantl 481 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Iso‘𝐶)𝐴)) |
| 20 | | initoeu2lem.h |
. . . . . . . 8
⊢ 𝐻 = (Hom ‘𝐶) |
| 21 | 20 | oveqi 7427 |
. . . . . . 7
⊢ (𝐵𝐻𝐷) = (𝐵(Hom ‘𝐶)𝐷) |
| 22 | 21 | eleq2i 2825 |
. . . . . 6
⊢ (𝐺 ∈ (𝐵𝐻𝐷) ↔ 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷)) |
| 23 | 22 | biimpi 216 |
. . . . 5
⊢ (𝐺 ∈ (𝐵𝐻𝐷) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷)) |
| 24 | 23 | 3ad2ant3 1135 |
. . . 4
⊢ ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷)) |
| 25 | 24 | adantl 481 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐺 ∈ (𝐵(Hom ‘𝐶)𝐷)) |
| 26 | | eqid 2734 |
. . . 4
⊢ (Hom
‘𝐶) = (Hom
‘𝐶) |
| 27 | | initoeu2lem.o |
. . . 4
⊢ ⚬ =
(comp‘𝐶) |
| 28 | 4, 26, 14, 7, 11, 9 | isohom 17796 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐵𝐼𝐴) ⊆ (𝐵(Hom ‘𝐶)𝐴)) |
| 29 | 28 | sseld 3964 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → (𝐾 ∈ (𝐵𝐼𝐴) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 30 | 29 | com12 32 |
. . . . . 6
⊢ (𝐾 ∈ (𝐵𝐼𝐴) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 31 | 30 | 3ad2ant1 1133 |
. . . . 5
⊢ ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → ((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴))) |
| 32 | 31 | impcom 407 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐾 ∈ (𝐵(Hom ‘𝐶)𝐴)) |
| 33 | 20 | oveqi 7427 |
. . . . . . . 8
⊢ (𝐴𝐻𝐷) = (𝐴(Hom ‘𝐶)𝐷) |
| 34 | 33 | eleq2i 2825 |
. . . . . . 7
⊢ (𝐹 ∈ (𝐴𝐻𝐷) ↔ 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷)) |
| 35 | 34 | biimpi 216 |
. . . . . 6
⊢ (𝐹 ∈ (𝐴𝐻𝐷) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷)) |
| 36 | 35 | 3ad2ant2 1134 |
. . . . 5
⊢ ((𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷)) |
| 37 | 36 | adantl 481 |
. . . 4
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → 𝐹 ∈ (𝐴(Hom ‘𝐶)𝐷)) |
| 38 | 4, 26, 27, 8, 12, 10, 13, 32, 37 | catcocl 17704 |
. . 3
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾) ∈ (𝐵(Hom ‘𝐶)𝐷)) |
| 39 | | eqid 2734 |
. . 3
⊢ ((𝐵(Inv‘𝐶)𝐴)‘𝐾) = ((𝐵(Inv‘𝐶)𝐴)‘𝐾) |
| 40 | 27 | oveqi 7427 |
. . 3
⊢
(〈𝐴, 𝐵〉 ⚬ 𝐷) = (〈𝐴, 𝐵〉(comp‘𝐶)𝐷) |
| 41 | 4, 5, 8, 10, 12, 13, 19, 25, 38, 39, 40 | rcaninv 17814 |
. 2
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷))) → ((𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾))) |
| 42 | 1, 3, 41 | sylc 65 |
1
⊢ (((𝜑 ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐷 ∈ 𝑋)) ∧ (𝐾 ∈ (𝐵𝐼𝐴) ∧ 𝐹 ∈ (𝐴𝐻𝐷) ∧ 𝐺 ∈ (𝐵𝐻𝐷)) ∧ ((𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾)) = (𝐺(〈𝐴, 𝐵〉 ⚬ 𝐷)((𝐵(Inv‘𝐶)𝐴)‘𝐾))) → 𝐺 = (𝐹(〈𝐵, 𝐴〉 ⚬ 𝐷)𝐾)) |