![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linepsubclN | Structured version Visualization version GIF version |
Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
linepsubcl.n | ⊢ 𝑁 = (Lines‘𝐾) |
linepsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
linepsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 39074 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2726 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2726 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | linepsubcl.n | . . . . 5 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | eqid 2726 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | 2, 3, 4, 5 | isline2 39486 | . . . 4 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
8 | 1 | adantr 479 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝐾 ∈ Lat) |
9 | eqid 2726 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 3 | atbase 39000 | . . . . . . . . 9 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
11 | 10 | ad2antrl 726 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑝 ∈ (Base‘𝐾)) |
12 | 9, 3 | atbase 39000 | . . . . . . . . 9 ⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾)) |
13 | 12 | ad2antll 727 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑞 ∈ (Base‘𝐾)) |
14 | 9, 2 | latjcl 18459 | . . . . . . . 8 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
15 | 8, 11, 13, 14 | syl3anc 1368 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
16 | linepsubcl.c | . . . . . . . 8 ⊢ 𝐶 = (PSubCl‘𝐾) | |
17 | 9, 5, 16 | pmapsubclN 39658 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
18 | 15, 17 | syldan 589 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
19 | eleq1a 2821 | . . . . . 6 ⊢ (((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶 → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) |
21 | 20 | adantld 489 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
22 | 21 | rexlimdvva 3202 | . . 3 ⊢ (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
23 | 7, 22 | sylbid 239 | . 2 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐶)) |
24 | 23 | imp 405 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ∃wrex 3060 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 joincjn 18331 Latclat 18451 Atomscatm 38974 HLchlt 39061 Linesclines 39206 pmapcpmap 39209 PSubClcpscN 39646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-iin 4996 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-proset 18315 df-poset 18333 df-plt 18350 df-lub 18366 df-glb 18367 df-join 18368 df-meet 18369 df-p0 18445 df-p1 18446 df-lat 18452 df-clat 18519 df-oposet 38887 df-ol 38889 df-oml 38890 df-covers 38977 df-ats 38978 df-atl 39009 df-cvlat 39033 df-hlat 39062 df-lines 39213 df-pmap 39216 df-polarityN 39615 df-psubclN 39647 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |