Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  linepsubclN Structured version   Visualization version   GIF version

Theorem linepsubclN 37702
Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
linepsubcl.n 𝑁 = (Lines‘𝐾)
linepsubcl.c 𝐶 = (PSubCl‘𝐾)
Assertion
Ref Expression
linepsubclN ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋𝐶)

Proof of Theorem linepsubclN
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 37114 . . . 4 (𝐾 ∈ HL → 𝐾 ∈ Lat)
2 eqid 2737 . . . . 5 (join‘𝐾) = (join‘𝐾)
3 eqid 2737 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
4 linepsubcl.n . . . . 5 𝑁 = (Lines‘𝐾)
5 eqid 2737 . . . . 5 (pmap‘𝐾) = (pmap‘𝐾)
62, 3, 4, 5isline2 37525 . . . 4 (𝐾 ∈ Lat → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)))))
71, 6syl 17 . . 3 (𝐾 ∈ HL → (𝑋𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)))))
81adantr 484 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝐾 ∈ Lat)
9 eqid 2737 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
109, 3atbase 37040 . . . . . . . . 9 (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾))
1110ad2antrl 728 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑝 ∈ (Base‘𝐾))
129, 3atbase 37040 . . . . . . . . 9 (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾))
1312ad2antll 729 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑞 ∈ (Base‘𝐾))
149, 2latjcl 17945 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
158, 11, 13, 14syl3anc 1373 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾))
16 linepsubcl.c . . . . . . . 8 𝐶 = (PSubCl‘𝐾)
179, 5, 16pmapsubclN 37697 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶)
1815, 17syldan 594 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶)
19 eleq1a 2833 . . . . . 6 (((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶 → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋𝐶))
2018, 19syl 17 . . . . 5 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋𝐶))
2120adantld 494 . . . 4 ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((𝑝𝑞𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋𝐶))
2221rexlimdvva 3213 . . 3 (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝𝑞𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋𝐶))
237, 22sylbid 243 . 2 (𝐾 ∈ HL → (𝑋𝑁𝑋𝐶))
2423imp 410 1 ((𝐾 ∈ HL ∧ 𝑋𝑁) → 𝑋𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wne 2940  wrex 3062  cfv 6380  (class class class)co 7213  Basecbs 16760  joincjn 17818  Latclat 17937  Atomscatm 37014  HLchlt 37101  Linesclines 37245  pmapcpmap 37248  PSubClcpscN 37685
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-riotaBAD 36704
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-undef 8015  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-join 17854  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-clat 18005  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lines 37252  df-pmap 37255  df-polarityN 37654  df-psubclN 37686
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator