![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linepsubclN | Structured version Visualization version GIF version |
Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
linepsubcl.n | ⊢ 𝑁 = (Lines‘𝐾) |
linepsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
linepsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 36030 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2795 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2795 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | linepsubcl.n | . . . . 5 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | eqid 2795 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | 2, 3, 4, 5 | isline2 36441 | . . . 4 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
8 | 1 | adantr 481 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝐾 ∈ Lat) |
9 | eqid 2795 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 3 | atbase 35956 | . . . . . . . . 9 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
11 | 10 | ad2antrl 724 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑝 ∈ (Base‘𝐾)) |
12 | 9, 3 | atbase 35956 | . . . . . . . . 9 ⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾)) |
13 | 12 | ad2antll 725 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑞 ∈ (Base‘𝐾)) |
14 | 9, 2 | latjcl 17490 | . . . . . . . 8 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
15 | 8, 11, 13, 14 | syl3anc 1364 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
16 | linepsubcl.c | . . . . . . . 8 ⊢ 𝐶 = (PSubCl‘𝐾) | |
17 | 9, 5, 16 | pmapsubclN 36613 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
18 | 15, 17 | syldan 591 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
19 | eleq1a 2878 | . . . . . 6 ⊢ (((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶 → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) |
21 | 20 | adantld 491 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
22 | 21 | rexlimdvva 3257 | . . 3 ⊢ (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
23 | 7, 22 | sylbid 241 | . 2 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐶)) |
24 | 23 | imp 407 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ≠ wne 2984 ∃wrex 3106 ‘cfv 6225 (class class class)co 7016 Basecbs 16312 joincjn 17383 Latclat 17484 Atomscatm 35930 HLchlt 36017 Linesclines 36161 pmapcpmap 36164 PSubClcpscN 36601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-riotaBAD 35620 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-iun 4827 df-iin 4828 df-br 4963 df-opab 5025 df-mpt 5042 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-undef 7790 df-proset 17367 df-poset 17385 df-plt 17397 df-lub 17413 df-glb 17414 df-join 17415 df-meet 17416 df-p0 17478 df-p1 17479 df-lat 17485 df-clat 17547 df-oposet 35843 df-ol 35845 df-oml 35846 df-covers 35933 df-ats 35934 df-atl 35965 df-cvlat 35989 df-hlat 36018 df-lines 36168 df-pmap 36171 df-polarityN 36570 df-psubclN 36602 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |