Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > linepsubclN | Structured version Visualization version GIF version |
Description: A line is a closed projective subspace. (Contributed by NM, 25-Jan-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
linepsubcl.n | ⊢ 𝑁 = (Lines‘𝐾) |
linepsubcl.c | ⊢ 𝐶 = (PSubCl‘𝐾) |
Ref | Expression |
---|---|
linepsubclN | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hllat 37114 | . . . 4 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
2 | eqid 2737 | . . . . 5 ⊢ (join‘𝐾) = (join‘𝐾) | |
3 | eqid 2737 | . . . . 5 ⊢ (Atoms‘𝐾) = (Atoms‘𝐾) | |
4 | linepsubcl.n | . . . . 5 ⊢ 𝑁 = (Lines‘𝐾) | |
5 | eqid 2737 | . . . . 5 ⊢ (pmap‘𝐾) = (pmap‘𝐾) | |
6 | 2, 3, 4, 5 | isline2 37525 | . . . 4 ⊢ (𝐾 ∈ Lat → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
7 | 1, 6 | syl 17 | . . 3 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 ↔ ∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))))) |
8 | 1 | adantr 484 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝐾 ∈ Lat) |
9 | eqid 2737 | . . . . . . . . . 10 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
10 | 9, 3 | atbase 37040 | . . . . . . . . 9 ⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ (Base‘𝐾)) |
11 | 10 | ad2antrl 728 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑝 ∈ (Base‘𝐾)) |
12 | 9, 3 | atbase 37040 | . . . . . . . . 9 ⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ (Base‘𝐾)) |
13 | 12 | ad2antll 729 | . . . . . . . 8 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → 𝑞 ∈ (Base‘𝐾)) |
14 | 9, 2 | latjcl 17945 | . . . . . . . 8 ⊢ ((𝐾 ∈ Lat ∧ 𝑝 ∈ (Base‘𝐾) ∧ 𝑞 ∈ (Base‘𝐾)) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
15 | 8, 11, 13, 14 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) |
16 | linepsubcl.c | . . . . . . . 8 ⊢ 𝐶 = (PSubCl‘𝐾) | |
17 | 9, 5, 16 | pmapsubclN 37697 | . . . . . . 7 ⊢ ((𝐾 ∈ HL ∧ (𝑝(join‘𝐾)𝑞) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
18 | 15, 17 | syldan 594 | . . . . . 6 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶) |
19 | eleq1a 2833 | . . . . . 6 ⊢ (((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) ∈ 𝐶 → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) | |
20 | 18, 19 | syl 17 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → (𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞)) → 𝑋 ∈ 𝐶)) |
21 | 20 | adantld 494 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
22 | 21 | rexlimdvva 3213 | . . 3 ⊢ (𝐾 ∈ HL → (∃𝑝 ∈ (Atoms‘𝐾)∃𝑞 ∈ (Atoms‘𝐾)(𝑝 ≠ 𝑞 ∧ 𝑋 = ((pmap‘𝐾)‘(𝑝(join‘𝐾)𝑞))) → 𝑋 ∈ 𝐶)) |
23 | 7, 22 | sylbid 243 | . 2 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐶)) |
24 | 23 | imp 410 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁) → 𝑋 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 ∃wrex 3062 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 joincjn 17818 Latclat 17937 Atomscatm 37014 HLchlt 37101 Linesclines 37245 pmapcpmap 37248 PSubClcpscN 37685 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-riotaBAD 36704 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-iin 4907 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-undef 8015 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-join 17854 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-clat 18005 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lines 37252 df-pmap 37255 df-polarityN 37654 df-psubclN 37686 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |