![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itg2cl | Structured version Visualization version GIF version |
Description: The integral of a nonnegative real function is an extended real number. (Contributed by Mario Carneiro, 28-Jun-2014.) |
Ref | Expression |
---|---|
itg2cl | ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} = {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} | |
2 | 1 | itg2val 24999 | . 2 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) = sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) |
3 | 1 | itg2lcl 24998 | . . 3 ⊢ {𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* |
4 | supxrcl 13155 | . . 3 ⊢ ({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))} ⊆ ℝ* → sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ∈ ℝ*) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝐹 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < ) ∈ ℝ* |
6 | 2, 5 | eqeltrdi 2846 | 1 ⊢ (𝐹:ℝ⟶(0[,]+∞) → (∫2‘𝐹) ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1541 ∈ wcel 2106 {cab 2714 ∃wrex 3071 ⊆ wss 3902 class class class wbr 5097 dom cdm 5625 ⟶wf 6480 ‘cfv 6484 (class class class)co 7342 ∘r cofr 7599 supcsup 9302 ℝcr 10976 0cc0 10977 +∞cpnf 11112 ℝ*cxr 11114 < clt 11115 ≤ cle 11116 [,]cicc 13188 ∫1citg1 24885 ∫2citg2 24886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-inf2 9503 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 ax-pre-sup 11055 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-int 4900 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-se 5581 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-isom 6493 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-of 7600 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-1o 8372 df-2o 8373 df-er 8574 df-map 8693 df-pm 8694 df-en 8810 df-dom 8811 df-sdom 8812 df-fin 8813 df-sup 9304 df-inf 9305 df-oi 9372 df-dju 9763 df-card 9801 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-div 11739 df-nn 12080 df-2 12142 df-3 12143 df-n0 12340 df-z 12426 df-uz 12689 df-q 12795 df-rp 12837 df-xadd 12955 df-ioo 13189 df-ico 13191 df-icc 13192 df-fz 13346 df-fzo 13489 df-fl 13618 df-seq 13828 df-exp 13889 df-hash 14151 df-cj 14910 df-re 14911 df-im 14912 df-sqrt 15046 df-abs 15047 df-clim 15297 df-sum 15498 df-xmet 20696 df-met 20697 df-ovol 24734 df-vol 24735 df-mbf 24889 df-itg1 24890 df-itg2 24891 |
This theorem is referenced by: itg2itg1 25007 itg2lecl 25009 itg2le 25010 itg2seq 25013 itg2uba 25014 itg2lea 25015 itg2eqa 25016 itg2mulc 25018 itg2split 25020 itg2monolem1 25021 itg2monolem2 25022 itg2monolem3 25023 itg2mono 25024 itg2gt0 25031 itg2cn 25034 itg2gt0cn 35986 ftc1anclem6 36009 ftc1anclem7 36010 ftc1anc 36012 |
Copyright terms: Public domain | W3C validator |