Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem7 Structured version   Visualization version   GIF version

Theorem dalawlem7 37891
Description: Lemma for dalaw 37900. Second piece of dalawlem8 37892. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l = (le‘𝐾)
dalawlem.j = (join‘𝐾)
dalawlem.m = (meet‘𝐾)
dalawlem.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
dalawlem7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))

Proof of Theorem dalawlem7
StepHypRef Expression
1 eqid 2738 . 2 (Base‘𝐾) = (Base‘𝐾)
2 dalawlem.l . 2 = (le‘𝐾)
3 simp11 1202 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ HL)
43hllatd 37378 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ Lat)
5 simp21 1205 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑃𝐴)
6 simp22 1206 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄𝐴)
7 dalawlem.j . . . . . 6 = (join‘𝐾)
8 dalawlem.a . . . . . 6 𝐴 = (Atoms‘𝐾)
91, 7, 8hlatjcl 37381 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
103, 5, 6, 9syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑄) ∈ (Base‘𝐾))
11 simp31 1208 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆𝐴)
121, 8atbase 37303 . . . . 5 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑆 ∈ (Base‘𝐾))
141, 7latjcl 18157 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
154, 10, 13, 14syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾))
16 simp32 1209 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇𝐴)
171, 8atbase 37303 . . . 4 (𝑇𝐴𝑇 ∈ (Base‘𝐾))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 ∈ (Base‘𝐾))
19 dalawlem.m . . . 4 = (meet‘𝐾)
201, 19latmcl 18158 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) 𝑆) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
214, 15, 18, 20syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ∈ (Base‘𝐾))
22 simp23 1207 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑅𝐴)
231, 7, 8hlatjcl 37381 . . . 4 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) ∈ (Base‘𝐾))
243, 6, 22, 23syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑅) ∈ (Base‘𝐾))
25 simp33 1210 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑈𝐴)
261, 7, 8hlatjcl 37381 . . . 4 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
273, 16, 25, 26syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 𝑈) ∈ (Base‘𝐾))
281, 19latmcl 18158 . . 3 ((𝐾 ∈ Lat ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
294, 24, 27, 28syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾))
301, 7, 8hlatjcl 37381 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑃𝐴) → (𝑅 𝑃) ∈ (Base‘𝐾))
313, 22, 5, 30syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑅 𝑃) ∈ (Base‘𝐾))
321, 7, 8hlatjcl 37381 . . . . 5 ((𝐾 ∈ HL ∧ 𝑈𝐴𝑆𝐴) → (𝑈 𝑆) ∈ (Base‘𝐾))
333, 25, 11, 32syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑈 𝑆) ∈ (Base‘𝐾))
341, 19latmcl 18158 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 𝑃) ∈ (Base‘𝐾) ∧ (𝑈 𝑆) ∈ (Base‘𝐾)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
354, 31, 33, 34syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾))
361, 7latjcl 18157 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
374, 29, 35, 36syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))) ∈ (Base‘𝐾))
38 hlol 37375 . . . . . 6 (𝐾 ∈ HL → 𝐾 ∈ OL)
393, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝐾 ∈ OL)
401, 7, 8hlatjcl 37381 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑆𝐴) → (𝑃 𝑆) ∈ (Base‘𝐾))
413, 5, 11, 40syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑃 𝑆) ∈ (Base‘𝐾))
421, 8atbase 37303 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
436, 42syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 ∈ (Base‘𝐾))
441, 7latjcl 18157 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
454, 41, 43, 44syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾))
461, 7, 8hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → (𝑄 𝑇) ∈ (Base‘𝐾))
473, 6, 16, 46syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑇) ∈ (Base‘𝐾))
481, 19latmassOLD 37243 . . . . 5 ((𝐾 ∈ OL ∧ (((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾) ∧ 𝑇 ∈ (Base‘𝐾))) → ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇) = (((𝑃 𝑆) 𝑄) ((𝑄 𝑇) 𝑇)))
4939, 45, 47, 18, 48syl13anc 1371 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇) = (((𝑃 𝑆) 𝑄) ((𝑄 𝑇) 𝑇)))
507, 8hlatj32 37386 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑆𝐴𝑄𝐴)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
513, 5, 11, 6, 50syl13anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) 𝑄) = ((𝑃 𝑄) 𝑆))
522, 7, 8hlatlej2 37390 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑇 (𝑄 𝑇))
533, 6, 16, 52syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑄 𝑇))
541, 2, 19latleeqm2 18186 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
554, 18, 47, 54syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑇 (𝑄 𝑇) ↔ ((𝑄 𝑇) 𝑇) = 𝑇))
5653, 55mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑇) 𝑇) = 𝑇)
5751, 56oveq12d 7293 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) ((𝑄 𝑇) 𝑇)) = (((𝑃 𝑄) 𝑆) 𝑇))
5849, 57eqtr2d 2779 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) = ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇))
59 simp12 1203 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅))
601, 19latmcl 18158 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
614, 41, 47, 60syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾))
621, 2, 7latjlej1 18171 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 𝑆) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾))) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) → (((𝑃 𝑆) (𝑄 𝑇)) 𝑄) ((𝑄 𝑅) 𝑄)))
634, 61, 24, 43, 62syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) → (((𝑃 𝑆) (𝑄 𝑇)) 𝑄) ((𝑄 𝑅) 𝑄)))
6459, 63mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) 𝑄) ((𝑄 𝑅) 𝑄))
652, 7, 8hlatlej1 37389 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑇𝐴) → 𝑄 (𝑄 𝑇))
663, 6, 16, 65syl3anc 1370 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑄 (𝑄 𝑇))
671, 2, 7, 19, 8atmod4i1 37880 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄𝐴 ∧ (𝑃 𝑆) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) ∧ 𝑄 (𝑄 𝑇)) → (((𝑃 𝑆) (𝑄 𝑇)) 𝑄) = (((𝑃 𝑆) 𝑄) (𝑄 𝑇)))
683, 6, 41, 47, 66, 67syl131anc 1382 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) (𝑄 𝑇)) 𝑄) = (((𝑃 𝑆) 𝑄) (𝑄 𝑇)))
697, 8hlatj32 37386 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄𝐴𝑅𝐴𝑄𝐴)) → ((𝑄 𝑅) 𝑄) = ((𝑄 𝑄) 𝑅))
703, 6, 22, 6, 69syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑄) = ((𝑄 𝑄) 𝑅))
711, 7latjidm 18180 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾)) → (𝑄 𝑄) = 𝑄)
724, 43, 71syl2anc 584 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (𝑄 𝑄) = 𝑄)
7372oveq1d 7290 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑄) 𝑅) = (𝑄 𝑅))
7470, 73eqtrd 2778 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) 𝑄) = (𝑄 𝑅))
7564, 68, 743brtr3d 5105 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) (𝑄 𝑇)) (𝑄 𝑅))
762, 7, 8hlatlej1 37389 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → 𝑇 (𝑇 𝑈))
773, 16, 25, 76syl3anc 1370 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → 𝑇 (𝑇 𝑈))
781, 19latmcl 18158 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑆) 𝑄) ∈ (Base‘𝐾) ∧ (𝑄 𝑇) ∈ (Base‘𝐾)) → (((𝑃 𝑆) 𝑄) (𝑄 𝑇)) ∈ (Base‘𝐾))
794, 45, 47, 78syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑆) 𝑄) (𝑄 𝑇)) ∈ (Base‘𝐾))
801, 2, 19latmlem12 18189 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) ∈ (Base‘𝐾) ∧ (𝑄 𝑅) ∈ (Base‘𝐾)) ∧ (𝑇 ∈ (Base‘𝐾) ∧ (𝑇 𝑈) ∈ (Base‘𝐾))) → (((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) (𝑄 𝑅) ∧ 𝑇 (𝑇 𝑈)) → ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇) ((𝑄 𝑅) (𝑇 𝑈))))
814, 79, 24, 18, 27, 80syl122anc 1378 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) (𝑄 𝑅) ∧ 𝑇 (𝑇 𝑈)) → ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇) ((𝑄 𝑅) (𝑇 𝑈))))
8275, 77, 81mp2and 696 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((((𝑃 𝑆) 𝑄) (𝑄 𝑇)) 𝑇) ((𝑄 𝑅) (𝑇 𝑈)))
8358, 82eqbrtrd 5096 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) ((𝑄 𝑅) (𝑇 𝑈)))
841, 2, 7latlej1 18166 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 𝑅) (𝑇 𝑈)) ∈ (Base‘𝐾) ∧ ((𝑅 𝑃) (𝑈 𝑆)) ∈ (Base‘𝐾)) → ((𝑄 𝑅) (𝑇 𝑈)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
854, 29, 35, 84syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → ((𝑄 𝑅) (𝑇 𝑈)) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
861, 2, 4, 21, 29, 37, 83, 85lattrd 18164 1 (((𝐾 ∈ HL ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑄 𝑅) ∧ ((𝑃 𝑆) (𝑄 𝑇)) (𝑅 𝑈)) ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑆𝐴𝑇𝐴𝑈𝐴)) → (((𝑃 𝑄) 𝑆) 𝑇) (((𝑄 𝑅) (𝑇 𝑈)) ((𝑅 𝑃) (𝑈 𝑆))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  OLcol 37188  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810
This theorem is referenced by:  dalawlem8  37892
  Copyright terms: Public domain W3C validator