Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dalawlem7 Structured version   Visualization version   GIF version

Theorem dalawlem7 39406
Description: Lemma for dalaw 39415. Second piece of dalawlem8 39407. (Contributed by NM, 6-Oct-2012.)
Hypotheses
Ref Expression
dalawlem.l ≀ = (leβ€˜πΎ)
dalawlem.j ∨ = (joinβ€˜πΎ)
dalawlem.m ∧ = (meetβ€˜πΎ)
dalawlem.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
dalawlem7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))

Proof of Theorem dalawlem7
StepHypRef Expression
1 eqid 2725 . 2 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2 dalawlem.l . 2 ≀ = (leβ€˜πΎ)
3 simp11 1200 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ HL)
43hllatd 38892 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ Lat)
5 simp21 1203 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑃 ∈ 𝐴)
6 simp22 1204 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ∈ 𝐴)
7 dalawlem.j . . . . . 6 ∨ = (joinβ€˜πΎ)
8 dalawlem.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
91, 7, 8hlatjcl 38895 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
103, 5, 6, 9syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ))
11 simp31 1206 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ 𝐴)
121, 8atbase 38817 . . . . 5 (𝑆 ∈ 𝐴 β†’ 𝑆 ∈ (Baseβ€˜πΎ))
1311, 12syl 17 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑆 ∈ (Baseβ€˜πΎ))
141, 7latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ 𝑆 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
154, 10, 13, 14syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ))
16 simp32 1207 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ 𝐴)
171, 8atbase 38817 . . . 4 (𝑇 ∈ 𝐴 β†’ 𝑇 ∈ (Baseβ€˜πΎ))
1816, 17syl 17 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ∈ (Baseβ€˜πΎ))
19 dalawlem.m . . . 4 ∧ = (meetβ€˜πΎ)
201, 19latmcl 18431 . . 3 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
214, 15, 18, 20syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ∈ (Baseβ€˜πΎ))
22 simp23 1205 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑅 ∈ 𝐴)
231, 7, 8hlatjcl 38895 . . . 4 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
243, 6, 22, 23syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
25 simp33 1208 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ π‘ˆ ∈ 𝐴)
261, 7, 8hlatjcl 38895 . . . 4 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
273, 16, 25, 26syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))
281, 19latmcl 18431 . . 3 ((𝐾 ∈ Lat ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
294, 24, 27, 28syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ))
301, 7, 8hlatjcl 38895 . . . . 5 ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴) β†’ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ))
313, 22, 5, 30syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ))
321, 7, 8hlatjcl 38895 . . . . 5 ((𝐾 ∈ HL ∧ π‘ˆ ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
333, 25, 11, 32syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ))
341, 19latmcl 18431 . . . 4 ((𝐾 ∈ Lat ∧ (𝑅 ∨ 𝑃) ∈ (Baseβ€˜πΎ) ∧ (π‘ˆ ∨ 𝑆) ∈ (Baseβ€˜πΎ)) β†’ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
354, 31, 33, 34syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ))
361, 7latjcl 18430 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
374, 29, 35, 36syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))) ∈ (Baseβ€˜πΎ))
38 hlol 38889 . . . . . 6 (𝐾 ∈ HL β†’ 𝐾 ∈ OL)
393, 38syl 17 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝐾 ∈ OL)
401, 7, 8hlatjcl 38895 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
413, 5, 11, 40syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ))
421, 8atbase 38817 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
436, 42syl 17 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
441, 7latjcl 18430 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Baseβ€˜πΎ))
454, 41, 43, 44syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Baseβ€˜πΎ))
461, 7, 8hlatjcl 38895 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
473, 6, 16, 46syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ))
481, 19latmassOLD 38757 . . . . 5 ((𝐾 ∈ OL ∧ (((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ) ∧ 𝑇 ∈ (Baseβ€˜πΎ))) β†’ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)))
4939, 45, 47, 18, 48syl13anc 1369 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) = (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)))
507, 8hlatj32 38900 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
513, 5, 11, 6, 50syl13anc 1369 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∨ 𝑄) = ((𝑃 ∨ 𝑄) ∨ 𝑆))
522, 7, 8hlatlej2 38904 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ 𝑇 ≀ (𝑄 ∨ 𝑇))
533, 6, 16, 52syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ≀ (𝑄 ∨ 𝑇))
541, 2, 19latleeqm2 18459 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ (𝑇 ≀ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇))
554, 18, 47, 54syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑇 ≀ (𝑄 ∨ 𝑇) ↔ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇))
5653, 55mpbid 231 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑇) ∧ 𝑇) = 𝑇)
5751, 56oveq12d 7434 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ ((𝑄 ∨ 𝑇) ∧ 𝑇)) = (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇))
5849, 57eqtr2d 2766 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) = ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇))
59 simp12 1201 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅))
601, 19latmcl 18431 . . . . . . . 8 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
614, 41, 47, 60syl3anc 1368 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
621, 2, 7latjlej1 18444 . . . . . . 7 ((𝐾 ∈ Lat ∧ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ) ∧ 𝑄 ∈ (Baseβ€˜πΎ))) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∨ 𝑄) ≀ ((𝑄 ∨ 𝑅) ∨ 𝑄)))
634, 61, 24, 43, 62syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∨ 𝑄) ≀ ((𝑄 ∨ 𝑅) ∨ 𝑄)))
6459, 63mpd 15 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∨ 𝑄) ≀ ((𝑄 ∨ 𝑅) ∨ 𝑄))
652, 7, 8hlatlej1 38903 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) β†’ 𝑄 ≀ (𝑄 ∨ 𝑇))
663, 6, 16, 65syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑄 ≀ (𝑄 ∨ 𝑇))
671, 2, 7, 19, 8atmod4i1 39395 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑃 ∨ 𝑆) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) ∧ 𝑄 ≀ (𝑄 ∨ 𝑇)) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∨ 𝑄) = (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)))
683, 6, 41, 47, 66, 67syl131anc 1380 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ∨ 𝑄) = (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)))
697, 8hlatj32 38900 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑄) = ((𝑄 ∨ 𝑄) ∨ 𝑅))
703, 6, 22, 6, 69syl13anc 1369 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑄) = ((𝑄 ∨ 𝑄) ∨ 𝑅))
711, 7latjidm 18453 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
724, 43, 71syl2anc 582 . . . . . . 7 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (𝑄 ∨ 𝑄) = 𝑄)
7372oveq1d 7431 . . . . . 6 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑄) ∨ 𝑅) = (𝑄 ∨ 𝑅))
7470, 73eqtrd 2765 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑄) = (𝑄 ∨ 𝑅))
7564, 68, 743brtr3d 5174 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅))
762, 7, 8hlatlej1 38903 . . . . 5 ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴) β†’ 𝑇 ≀ (𝑇 ∨ π‘ˆ))
773, 16, 25, 76syl3anc 1368 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ 𝑇 ≀ (𝑇 ∨ π‘ˆ))
781, 19latmcl 18431 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑆) ∨ 𝑄) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑇) ∈ (Baseβ€˜πΎ)) β†’ (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
794, 45, 47, 78syl3anc 1368 . . . . 5 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ))
801, 2, 19latmlem12 18462 . . . . 5 ((𝐾 ∈ Lat ∧ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∈ (Baseβ€˜πΎ) ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) ∧ (𝑇 ∈ (Baseβ€˜πΎ) ∧ (𝑇 ∨ π‘ˆ) ∈ (Baseβ€˜πΎ))) β†’ (((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ 𝑇 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))))
814, 79, 24, 18, 27, 80syl122anc 1376 . . . 4 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ 𝑇 ≀ (𝑇 ∨ π‘ˆ)) β†’ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ))))
8275, 77, 81mp2and 697 . . 3 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((((𝑃 ∨ 𝑆) ∨ 𝑄) ∧ (𝑄 ∨ 𝑇)) ∧ 𝑇) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)))
8358, 82eqbrtrd 5165 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)))
841, 2, 7latlej1 18439 . . 3 ((𝐾 ∈ Lat ∧ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∈ (Baseβ€˜πΎ) ∧ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆)) ∈ (Baseβ€˜πΎ)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
854, 29, 35, 84syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ ((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
861, 2, 4, 21, 29, 37, 83, 85lattrd 18437 1 (((𝐾 ∈ HL ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑄 ∨ 𝑅) ∧ ((𝑃 ∨ 𝑆) ∧ (𝑄 ∨ 𝑇)) ≀ (𝑅 ∨ π‘ˆ)) ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴 ∧ π‘ˆ ∈ 𝐴)) β†’ (((𝑃 ∨ 𝑄) ∨ 𝑆) ∧ 𝑇) ≀ (((𝑄 ∨ 𝑅) ∧ (𝑇 ∨ π‘ˆ)) ∨ ((𝑅 ∨ 𝑃) ∧ (π‘ˆ ∨ 𝑆))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   class class class wbr 5143  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  OLcol 38702  Atomscatm 38791  HLchlt 38878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-psubsp 39032  df-pmap 39033  df-padd 39325
This theorem is referenced by:  dalawlem8  39407
  Copyright terms: Public domain W3C validator