MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbinfle Structured version   Visualization version   GIF version

Theorem lbinfle 12166
Description: If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
Assertion
Ref Expression
lbinfle ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)
Distinct variable groups:   𝑥,𝑆,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem lbinfle
StepHypRef Expression
1 lbinf 12164 . . 3 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
213adant3 1129 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) = (𝑥𝑆𝑦𝑆 𝑥𝑦))
3 lble 12163 . 2 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → (𝑥𝑆𝑦𝑆 𝑥𝑦) ≤ 𝐴)
42, 3eqbrtrd 5160 1 ((𝑆 ⊆ ℝ ∧ ∃𝑥𝑆𝑦𝑆 𝑥𝑦𝐴𝑆) → inf(𝑆, ℝ, < ) ≤ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1533  wcel 2098  wral 3053  wrex 3062  wss 3940   class class class wbr 5138  crio 7356  infcinf 9432  cr 11105   < clt 11245  cle 11246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-resscn 11163  ax-pre-lttri 11180  ax-pre-lttrn 11181
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251
This theorem is referenced by:  infssuzle  12912  aks4d1p5  41438  aks4d1p8  41445  rencldnfilem  42047  stoweidlem29  45230  hoidmvlelem2  45797
  Copyright terms: Public domain W3C validator