| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel | Structured version Visualization version GIF version | ||
| Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.) |
| Ref | Expression |
|---|---|
| lhpocnel.l | ⊢ ≤ = (le‘𝐾) |
| lhpocnel.o | ⊢ ⊥ = (oc‘𝐾) |
| lhpocnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lhpocnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| lhpocnel | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊) ≤ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lhpocnel.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
| 2 | lhpocnel.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | lhpocnel.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 1, 2, 3 | lhpocat 39996 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
| 5 | lhpocnel.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
| 6 | 5, 1, 3 | lhpocnle 39995 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ ( ⊥ ‘𝑊) ≤ 𝑊) |
| 7 | 4, 6 | jca 511 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊) ≤ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 ‘cfv 6482 lecple 17168 occoc 17169 Atomscatm 39242 HLchlt 39329 LHypclh 39963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-oposet 39155 df-ol 39157 df-oml 39158 df-covers 39245 df-ats 39246 df-atl 39277 df-cvlat 39301 df-hlat 39330 df-lhyp 39967 |
| This theorem is referenced by: lhpocnel2 39998 trlcl 40143 trlle 40163 cdlemk19w 40951 dia2dimlem8 41050 dicssdvh 41165 dicvaddcl 41169 dicvscacl 41170 dicn0 41171 dih1 41265 dihatlat 41313 |
| Copyright terms: Public domain | W3C validator |