Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel Structured version   Visualization version   GIF version

Theorem lhpocnel 40012
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lhpocnel.l = (le‘𝐾)
lhpocnel.o = (oc‘𝐾)
lhpocnel.a 𝐴 = (Atoms‘𝐾)
lhpocnel.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocnel ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))

Proof of Theorem lhpocnel
StepHypRef Expression
1 lhpocnel.o . . 3 = (oc‘𝐾)
2 lhpocnel.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpocnel.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpocat 40011 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
5 lhpocnel.l . . 3 = (le‘𝐾)
65, 1, 3lhpocnle 40010 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)
74, 6jca 511 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  lecple 17227  occoc 17228  Atomscatm 39256  HLchlt 39343  LHypclh 39978
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-lhyp 39982
This theorem is referenced by:  lhpocnel2  40013  trlcl  40158  trlle  40178  cdlemk19w  40966  dia2dimlem8  41065  dicssdvh  41180  dicvaddcl  41184  dicvscacl  41185  dicn0  41186  dih1  41280  dihatlat  41328
  Copyright terms: Public domain W3C validator