Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel Structured version   Visualization version   GIF version

Theorem lhpocnel 40015
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lhpocnel.l = (le‘𝐾)
lhpocnel.o = (oc‘𝐾)
lhpocnel.a 𝐴 = (Atoms‘𝐾)
lhpocnel.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocnel ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))

Proof of Theorem lhpocnel
StepHypRef Expression
1 lhpocnel.o . . 3 = (oc‘𝐾)
2 lhpocnel.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpocnel.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpocat 40014 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
5 lhpocnel.l . . 3 = (le‘𝐾)
65, 1, 3lhpocnle 40013 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)
74, 6jca 511 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108   class class class wbr 5151  cfv 6569  lecple 17314  occoc 17315  Atomscatm 39259  HLchlt 39346  LHypclh 39981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-riota 7395  df-ov 7441  df-oprab 7442  df-proset 18361  df-poset 18380  df-plt 18397  df-lub 18413  df-glb 18414  df-meet 18416  df-p0 18492  df-p1 18493  df-lat 18499  df-oposet 39172  df-ol 39174  df-oml 39175  df-covers 39262  df-ats 39263  df-atl 39294  df-cvlat 39318  df-hlat 39347  df-lhyp 39985
This theorem is referenced by:  lhpocnel2  40016  trlcl  40161  trlle  40181  cdlemk19w  40969  dia2dimlem8  41068  dicssdvh  41183  dicvaddcl  41187  dicvscacl  41188  dicn0  41189  dih1  41283  dihatlat  41331
  Copyright terms: Public domain W3C validator