Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel Structured version   Visualization version   GIF version

Theorem lhpocnel 37769
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lhpocnel.l = (le‘𝐾)
lhpocnel.o = (oc‘𝐾)
lhpocnel.a 𝐴 = (Atoms‘𝐾)
lhpocnel.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
lhpocnel ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))

Proof of Theorem lhpocnel
StepHypRef Expression
1 lhpocnel.o . . 3 = (oc‘𝐾)
2 lhpocnel.a . . 3 𝐴 = (Atoms‘𝐾)
3 lhpocnel.h . . 3 𝐻 = (LHyp‘𝐾)
41, 2, 3lhpocat 37768 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( 𝑊) ∈ 𝐴)
5 lhpocnel.l . . 3 = (le‘𝐾)
65, 1, 3lhpocnle 37767 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ¬ ( 𝑊) 𝑊)
74, 6jca 515 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( 𝑊) ∈ 𝐴 ∧ ¬ ( 𝑊) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110   class class class wbr 5053  cfv 6380  lecple 16809  occoc 16810  Atomscatm 37014  HLchlt 37101  LHypclh 37735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-proset 17802  df-poset 17820  df-plt 17836  df-lub 17852  df-glb 17853  df-meet 17855  df-p0 17931  df-p1 17932  df-lat 17938  df-oposet 36927  df-ol 36929  df-oml 36930  df-covers 37017  df-ats 37018  df-atl 37049  df-cvlat 37073  df-hlat 37102  df-lhyp 37739
This theorem is referenced by:  lhpocnel2  37770  trlcl  37915  trlle  37935  cdlemk19w  38723  dia2dimlem8  38822  dicssdvh  38937  dicvaddcl  38941  dicvscacl  38942  dicn0  38943  dih1  39037  dihatlat  39085
  Copyright terms: Public domain W3C validator