Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lhpocnel | Structured version Visualization version GIF version |
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.) |
Ref | Expression |
---|---|
lhpocnel.l | ⊢ ≤ = (le‘𝐾) |
lhpocnel.o | ⊢ ⊥ = (oc‘𝐾) |
lhpocnel.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lhpocnel.h | ⊢ 𝐻 = (LHyp‘𝐾) |
Ref | Expression |
---|---|
lhpocnel | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊) ≤ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpocnel.o | . . 3 ⊢ ⊥ = (oc‘𝐾) | |
2 | lhpocnel.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | lhpocnel.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | 1, 2, 3 | lhpocat 37768 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( ⊥ ‘𝑊) ∈ 𝐴) |
5 | lhpocnel.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
6 | 5, 1, 3 | lhpocnle 37767 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ¬ ( ⊥ ‘𝑊) ≤ 𝑊) |
7 | 4, 6 | jca 515 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( ⊥ ‘𝑊) ∈ 𝐴 ∧ ¬ ( ⊥ ‘𝑊) ≤ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 lecple 16809 occoc 16810 Atomscatm 37014 HLchlt 37101 LHypclh 37735 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-proset 17802 df-poset 17820 df-plt 17836 df-lub 17852 df-glb 17853 df-meet 17855 df-p0 17931 df-p1 17932 df-lat 17938 df-oposet 36927 df-ol 36929 df-oml 36930 df-covers 37017 df-ats 37018 df-atl 37049 df-cvlat 37073 df-hlat 37102 df-lhyp 37739 |
This theorem is referenced by: lhpocnel2 37770 trlcl 37915 trlle 37935 cdlemk19w 38723 dia2dimlem8 38822 dicssdvh 38937 dicvaddcl 38941 dicvscacl 38942 dicn0 38943 dih1 39037 dihatlat 39085 |
Copyright terms: Public domain | W3C validator |