Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lhpocnel Structured version   Visualization version   GIF version

Theorem lhpocnel 39402
Description: The orthocomplement of a co-atom is an atom not under it. Provides a convenient construction when we need the existence of any object with this property. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
lhpocnel.l ≀ = (leβ€˜πΎ)
lhpocnel.o βŠ₯ = (ocβ€˜πΎ)
lhpocnel.a 𝐴 = (Atomsβ€˜πΎ)
lhpocnel.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
lhpocnel ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (( βŠ₯ β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ( βŠ₯ β€˜π‘Š) ≀ π‘Š))

Proof of Theorem lhpocnel
StepHypRef Expression
1 lhpocnel.o . . 3 βŠ₯ = (ocβ€˜πΎ)
2 lhpocnel.a . . 3 𝐴 = (Atomsβ€˜πΎ)
3 lhpocnel.h . . 3 𝐻 = (LHypβ€˜πΎ)
41, 2, 3lhpocat 39401 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ ( βŠ₯ β€˜π‘Š) ∈ 𝐴)
5 lhpocnel.l . . 3 ≀ = (leβ€˜πΎ)
65, 1, 3lhpocnle 39400 . 2 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ Β¬ ( βŠ₯ β€˜π‘Š) ≀ π‘Š)
74, 6jca 511 1 ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) β†’ (( βŠ₯ β€˜π‘Š) ∈ 𝐴 ∧ Β¬ ( βŠ₯ β€˜π‘Š) ≀ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 395   = wceq 1533   ∈ wcel 2098   class class class wbr 5141  β€˜cfv 6537  lecple 17213  occoc 17214  Atomscatm 38646  HLchlt 38733  LHypclh 39368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18260  df-poset 18278  df-plt 18295  df-lub 18311  df-glb 18312  df-meet 18314  df-p0 18390  df-p1 18391  df-lat 18397  df-oposet 38559  df-ol 38561  df-oml 38562  df-covers 38649  df-ats 38650  df-atl 38681  df-cvlat 38705  df-hlat 38734  df-lhyp 39372
This theorem is referenced by:  lhpocnel2  39403  trlcl  39548  trlle  39568  cdlemk19w  40356  dia2dimlem8  40455  dicssdvh  40570  dicvaddcl  40574  dicvscacl  40575  dicn0  40576  dih1  40670  dihatlat  40718
  Copyright terms: Public domain W3C validator