Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimcl Structured version   Visualization version   GIF version

Theorem xlimcl 45807
Description: The limit of a sequence of extended real numbers is an extended real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Assertion
Ref Expression
xlimcl (𝐹~~>*𝐴𝐴 ∈ ℝ*)

Proof of Theorem xlimcl
StepHypRef Expression
1 letopon 23108 . 2 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
2 df-xlim 45804 . . . 4 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
32breqi 5101 . . 3 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
43biimpi 216 . 2 (𝐹~~>*𝐴𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴)
5 lmcl 23200 . 2 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) → 𝐴 ∈ ℝ*)
61, 4, 5sylancr 587 1 (𝐹~~>*𝐴𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109   class class class wbr 5095  cfv 6486  *cxr 11167  cle 11169  ordTopcordt 17421  TopOnctopon 22813  𝑡clm 23129  ~~>*clsxlim 45803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-pre-lttri 11102  ax-pre-lttrn 11103
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-om 7807  df-1o 8395  df-2o 8396  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fi 9320  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-topgen 17365  df-ordt 17423  df-ps 18490  df-tsr 18491  df-top 22797  df-topon 22814  df-bases 22849  df-lm 23132  df-xlim 45804
This theorem is referenced by:  dfxlim2v  45832  xlimliminflimsup  45847
  Copyright terms: Public domain W3C validator