![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimcl | Structured version Visualization version GIF version |
Description: The limit of a sequence of extended real numbers is an extended real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimcl | β’ (πΉ~~>*π΄ β π΄ β β*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letopon 23053 | . 2 β’ (ordTopβ β€ ) β (TopOnββ*) | |
2 | df-xlim 45081 | . . . 4 β’ ~~>* = (βπ‘β(ordTopβ β€ )) | |
3 | 2 | breqi 5145 | . . 3 β’ (πΉ~~>*π΄ β πΉ(βπ‘β(ordTopβ β€ ))π΄) |
4 | 3 | biimpi 215 | . 2 β’ (πΉ~~>*π΄ β πΉ(βπ‘β(ordTopβ β€ ))π΄) |
5 | lmcl 23145 | . 2 β’ (((ordTopβ β€ ) β (TopOnββ*) β§ πΉ(βπ‘β(ordTopβ β€ ))π΄) β π΄ β β*) | |
6 | 1, 4, 5 | sylancr 586 | 1 β’ (πΉ~~>*π΄ β π΄ β β*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2098 class class class wbr 5139 βcfv 6534 β*cxr 11246 β€ cle 11248 ordTopcordt 17450 TopOnctopon 22756 βπ‘clm 23074 ~~>*clsxlim 45080 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-int 4942 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-1o 8462 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fi 9403 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-topgen 17394 df-ordt 17452 df-ps 18527 df-tsr 18528 df-top 22740 df-topon 22757 df-bases 22793 df-lm 23077 df-xlim 45081 |
This theorem is referenced by: dfxlim2v 45109 xlimliminflimsup 45124 |
Copyright terms: Public domain | W3C validator |