![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimcl | Structured version Visualization version GIF version |
Description: The limit of a sequence of extended real numbers is an extended real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimcl | β’ (πΉ~~>*π΄ β π΄ β β*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letopon 23122 | . 2 β’ (ordTopβ β€ ) β (TopOnββ*) | |
2 | df-xlim 45207 | . . . 4 β’ ~~>* = (βπ‘β(ordTopβ β€ )) | |
3 | 2 | breqi 5154 | . . 3 β’ (πΉ~~>*π΄ β πΉ(βπ‘β(ordTopβ β€ ))π΄) |
4 | 3 | biimpi 215 | . 2 β’ (πΉ~~>*π΄ β πΉ(βπ‘β(ordTopβ β€ ))π΄) |
5 | lmcl 23214 | . 2 β’ (((ordTopβ β€ ) β (TopOnββ*) β§ πΉ(βπ‘β(ordTopβ β€ ))π΄) β π΄ β β*) | |
6 | 1, 4, 5 | sylancr 586 | 1 β’ (πΉ~~>*π΄ β π΄ β β*) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2099 class class class wbr 5148 βcfv 6548 β*cxr 11278 β€ cle 11280 ordTopcordt 17481 TopOnctopon 22825 βπ‘clm 23143 ~~>*clsxlim 45206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11195 ax-resscn 11196 ax-pre-lttri 11213 ax-pre-lttrn 11214 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-om 7871 df-1o 8487 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fi 9435 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-topgen 17425 df-ordt 17483 df-ps 18558 df-tsr 18559 df-top 22809 df-topon 22826 df-bases 22862 df-lm 23146 df-xlim 45207 |
This theorem is referenced by: dfxlim2v 45235 xlimliminflimsup 45250 |
Copyright terms: Public domain | W3C validator |