Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xlimcl | Structured version Visualization version GIF version |
Description: The limit of a sequence of extended real numbers is an extended real number. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
xlimcl | ⊢ (𝐹~~>*𝐴 → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letopon 22102 | . 2 ⊢ (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) | |
2 | df-xlim 43035 | . . . 4 ⊢ ~~>* = (⇝𝑡‘(ordTop‘ ≤ )) | |
3 | 2 | breqi 5059 | . . 3 ⊢ (𝐹~~>*𝐴 ↔ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
4 | 3 | biimpi 219 | . 2 ⊢ (𝐹~~>*𝐴 → 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) |
5 | lmcl 22194 | . 2 ⊢ (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ 𝐹(⇝𝑡‘(ordTop‘ ≤ ))𝐴) → 𝐴 ∈ ℝ*) | |
6 | 1, 4, 5 | sylancr 590 | 1 ⊢ (𝐹~~>*𝐴 → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 class class class wbr 5053 ‘cfv 6380 ℝ*cxr 10866 ≤ cle 10868 ordTopcordt 17004 TopOnctopon 21807 ⇝𝑡clm 22123 ~~>*clsxlim 43034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-pre-lttri 10803 ax-pre-lttrn 10804 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-1o 8202 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-fi 9027 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-topgen 16948 df-ordt 17006 df-ps 18072 df-tsr 18073 df-top 21791 df-topon 21808 df-bases 21843 df-lm 22126 df-xlim 43035 |
This theorem is referenced by: dfxlim2v 43063 xlimliminflimsup 43078 |
Copyright terms: Public domain | W3C validator |