Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln2 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
Ref | Expression |
---|---|
islpln5.b | ⊢ 𝐵 = (Base‘𝐾) |
islpln5.l | ⊢ ≤ = (le‘𝐾) |
islpln5.j | ⊢ ∨ = (join‘𝐾) |
islpln5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln5.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | islpln5.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 1, 2 | lplnbase 37145 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
4 | 3 | pm4.71ri 564 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃)) |
5 | islpln5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | islpln5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | islpln5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 5, 6, 7, 2 | islpln5 37146 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
9 | 8 | pm5.32da 582 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
10 | 4, 9 | syl5bb 286 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 class class class wbr 5036 ‘cfv 6340 (class class class)co 7156 Basecbs 16555 lecple 16644 joincjn 17634 Atomscatm 36874 HLchlt 36961 LPlanesclpl 37103 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-proset 17618 df-poset 17636 df-plt 17648 df-lub 17664 df-glb 17665 df-join 17666 df-meet 17667 df-p0 17729 df-lat 17736 df-clat 17798 df-oposet 36787 df-ol 36789 df-oml 36790 df-covers 36877 df-ats 36878 df-atl 36909 df-cvlat 36933 df-hlat 36962 df-llines 37109 df-lplanes 37110 |
This theorem is referenced by: lvolex3N 37149 llncvrlpln2 37168 islvol5 37190 lvolnlelpln 37196 lplncvrlvol2 37226 2lplnj 37231 |
Copyright terms: Public domain | W3C validator |