![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln2 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
Ref | Expression |
---|---|
islpln5.b | ⊢ 𝐵 = (Base‘𝐾) |
islpln5.l | ⊢ ≤ = (le‘𝐾) |
islpln5.j | ⊢ ∨ = (join‘𝐾) |
islpln5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln5.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | islpln5.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 1, 2 | lplnbase 39491 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
4 | 3 | pm4.71ri 560 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃)) |
5 | islpln5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | islpln5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | islpln5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 5, 6, 7, 2 | islpln5 39492 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
9 | 8 | pm5.32da 578 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
10 | 4, 9 | bitrid 283 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 lecple 17318 joincjn 18381 Atomscatm 39219 HLchlt 39306 LPlanesclpl 39449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 |
This theorem is referenced by: lvolex3N 39495 llncvrlpln2 39514 islvol5 39536 lvolnlelpln 39542 lplncvrlvol2 39572 2lplnj 39577 |
Copyright terms: Public domain | W3C validator |