![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islpln2 | Structured version Visualization version GIF version |
Description: The predicate "is a lattice plane" in terms of atoms. (Contributed by NM, 25-Jun-2012.) |
Ref | Expression |
---|---|
islpln5.b | ⊢ 𝐵 = (Base‘𝐾) |
islpln5.l | ⊢ ≤ = (le‘𝐾) |
islpln5.j | ⊢ ∨ = (join‘𝐾) |
islpln5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
islpln5.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
islpln2 | ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islpln5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
2 | islpln5.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
3 | 1, 2 | lplnbase 36155 | . . 3 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ 𝐵) |
4 | 3 | pm4.71ri 553 | . 2 ⊢ (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃)) |
5 | islpln5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | islpln5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
7 | islpln5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
8 | 1, 5, 6, 7, 2 | islpln5 36156 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ 𝑃 ↔ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟)))) |
9 | 8 | pm5.32da 571 | . 2 ⊢ (𝐾 ∈ HL → ((𝑋 ∈ 𝐵 ∧ 𝑋 ∈ 𝑃) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
10 | 4, 9 | syl5bb 275 | 1 ⊢ (𝐾 ∈ HL → (𝑋 ∈ 𝑃 ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑝 ∈ 𝐴 ∃𝑞 ∈ 𝐴 ∃𝑟 ∈ 𝐴 (𝑝 ≠ 𝑞 ∧ ¬ 𝑟 ≤ (𝑝 ∨ 𝑞) ∧ 𝑋 = ((𝑝 ∨ 𝑞) ∨ 𝑟))))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 387 ∧ w3a 1069 = wceq 1508 ∈ wcel 2051 ≠ wne 2969 ∃wrex 3091 class class class wbr 4934 ‘cfv 6193 (class class class)co 6982 Basecbs 16345 lecple 16434 joincjn 17424 Atomscatm 35884 HLchlt 35971 LPlanesclpl 36113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2752 ax-rep 5053 ax-sep 5064 ax-nul 5071 ax-pow 5123 ax-pr 5190 ax-un 7285 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2551 df-eu 2589 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3419 df-sbc 3684 df-csb 3789 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-pw 4427 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-iun 4799 df-br 4935 df-opab 4997 df-mpt 5014 df-id 5316 df-xp 5417 df-rel 5418 df-cnv 5419 df-co 5420 df-dm 5421 df-rn 5422 df-res 5423 df-ima 5424 df-iota 6157 df-fun 6195 df-fn 6196 df-f 6197 df-f1 6198 df-fo 6199 df-f1o 6200 df-fv 6201 df-riota 6943 df-ov 6985 df-oprab 6986 df-proset 17408 df-poset 17426 df-plt 17438 df-lub 17454 df-glb 17455 df-join 17456 df-meet 17457 df-p0 17519 df-lat 17526 df-clat 17588 df-oposet 35797 df-ol 35799 df-oml 35800 df-covers 35887 df-ats 35888 df-atl 35919 df-cvlat 35943 df-hlat 35972 df-llines 36119 df-lplanes 36120 |
This theorem is referenced by: lvolex3N 36159 llncvrlpln2 36178 islvol5 36200 lvolnlelpln 36206 lplncvrlvol2 36236 2lplnj 36241 |
Copyright terms: Public domain | W3C validator |