Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2lplnmN | Structured version Visualization version GIF version |
Description: If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2lplnm.j | ⊢ ∨ = (join‘𝐾) |
2lplnm.m | ⊢ ∧ = (meet‘𝐾) |
2lplnm.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
2lplnm.n | ⊢ 𝑁 = (LLines‘𝐾) |
2lplnm.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
2lplnmN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝑌 ∈ 𝑃) | |
2 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝐾 ∈ HL) | |
3 | hllat 37419 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
4 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 2lplnm.p | . . . . . 6 ⊢ 𝑃 = (LPlanes‘𝐾) | |
6 | 4, 5 | lplnbase 37590 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
7 | 4, 5 | lplnbase 37590 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) |
8 | 2lplnm.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcl 18203 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
10 | 3, 6, 7, 9 | syl3an 1160 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
11 | 10 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
12 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ (Base‘𝐾)) |
13 | 12 | adantr 482 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) |
14 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐾 ∈ HL) | |
15 | 6 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ (Base‘𝐾)) |
16 | 2lplnm.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
17 | 2lplnm.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
18 | 4, 16, 8, 17 | cvrexch 37476 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) |
19 | 14, 15, 12, 18 | syl3anc 1371 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) |
20 | 19 | biimpar 479 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌)𝐶𝑌) |
21 | 2lplnm.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 4, 17, 21, 5 | llncvrlpln 37614 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌)𝐶𝑌) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
23 | 2, 11, 13, 20, 22 | syl31anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
24 | 1, 23 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 class class class wbr 5081 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 joincjn 18074 meetcmee 18075 Latclat 18194 ⋖ ccvr 37318 HLchlt 37406 LLinesclln 37547 LPlanesclpl 37548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-riota 7264 df-ov 7310 df-oprab 7311 df-proset 18058 df-poset 18076 df-plt 18093 df-lub 18109 df-glb 18110 df-join 18111 df-meet 18112 df-p0 18188 df-lat 18195 df-clat 18262 df-oposet 37232 df-ol 37234 df-oml 37235 df-covers 37322 df-ats 37323 df-atl 37354 df-cvlat 37378 df-hlat 37407 df-llines 37554 df-lplanes 37555 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |