Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2lplnmN Structured version   Visualization version   GIF version

Theorem 2lplnmN 37552
Description: If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
2lplnm.j = (join‘𝐾)
2lplnm.m = (meet‘𝐾)
2lplnm.c 𝐶 = ( ⋖ ‘𝐾)
2lplnm.n 𝑁 = (LLines‘𝐾)
2lplnm.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
2lplnmN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑁)

Proof of Theorem 2lplnmN
StepHypRef Expression
1 simpl3 1191 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝑌𝑃)
2 simpl1 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝐾 ∈ HL)
3 hllat 37356 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
4 eqid 2739 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
5 2lplnm.p . . . . . 6 𝑃 = (LPlanes‘𝐾)
64, 5lplnbase 37527 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
74, 5lplnbase 37527 . . . . 5 (𝑌𝑃𝑌 ∈ (Base‘𝐾))
8 2lplnm.m . . . . . 6 = (meet‘𝐾)
94, 8latmcl 18139 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 𝑌) ∈ (Base‘𝐾))
103, 6, 7, 9syl3an 1158 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → (𝑋 𝑌) ∈ (Base‘𝐾))
1110adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ (Base‘𝐾))
1273ad2ant3 1133 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑌 ∈ (Base‘𝐾))
1312adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → 𝑌 ∈ (Base‘𝐾))
14 simp1 1134 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝐾 ∈ HL)
1563ad2ant2 1132 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → 𝑋 ∈ (Base‘𝐾))
16 2lplnm.j . . . . . 6 = (join‘𝐾)
17 2lplnm.c . . . . . 6 𝐶 = ( ⋖ ‘𝐾)
184, 16, 8, 17cvrexch 37413 . . . . 5 ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
1914, 15, 12, 18syl3anc 1369 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) → ((𝑋 𝑌)𝐶𝑌𝑋𝐶(𝑋 𝑌)))
2019biimpar 477 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌)𝐶𝑌)
21 2lplnm.n . . . 4 𝑁 = (LLines‘𝐾)
224, 17, 21, 5llncvrlpln 37551 . . 3 (((𝐾 ∈ HL ∧ (𝑋 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 𝑌)𝐶𝑌) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
232, 11, 13, 20, 22syl31anc 1371 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → ((𝑋 𝑌) ∈ 𝑁𝑌𝑃))
241, 23mpbird 256 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑃) ∧ 𝑋𝐶(𝑋 𝑌)) → (𝑋 𝑌) ∈ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109   class class class wbr 5078  cfv 6430  (class class class)co 7268  Basecbs 16893  joincjn 18010  meetcmee 18011  Latclat 18130  ccvr 37255  HLchlt 37343  LLinesclln 37484  LPlanesclpl 37485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-proset 17994  df-poset 18012  df-plt 18029  df-lub 18045  df-glb 18046  df-join 18047  df-meet 18048  df-p0 18124  df-lat 18131  df-clat 18198  df-oposet 37169  df-ol 37171  df-oml 37172  df-covers 37259  df-ats 37260  df-atl 37291  df-cvlat 37315  df-hlat 37344  df-llines 37491  df-lplanes 37492
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator