![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2lplnmN | Structured version Visualization version GIF version |
Description: If the join of two lattice planes covers one of them, their meet is a lattice line. (Contributed by NM, 30-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
2lplnm.j | ⊢ ∨ = (join‘𝐾) |
2lplnm.m | ⊢ ∧ = (meet‘𝐾) |
2lplnm.c | ⊢ 𝐶 = ( ⋖ ‘𝐾) |
2lplnm.n | ⊢ 𝑁 = (LLines‘𝐾) |
2lplnm.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
2lplnmN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl3 1193 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝑌 ∈ 𝑃) | |
2 | simpl1 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝐾 ∈ HL) | |
3 | hllat 39319 | . . . . 5 ⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) | |
4 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
5 | 2lplnm.p | . . . . . 6 ⊢ 𝑃 = (LPlanes‘𝐾) | |
6 | 4, 5 | lplnbase 39491 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
7 | 4, 5 | lplnbase 39491 | . . . . 5 ⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) |
8 | 2lplnm.m | . . . . . 6 ⊢ ∧ = (meet‘𝐾) | |
9 | 4, 8 | latmcl 18510 | . . . . 5 ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
10 | 3, 6, 7, 9 | syl3an 1160 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
11 | 10 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
12 | 7 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑌 ∈ (Base‘𝐾)) |
13 | 12 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) |
14 | simp1 1136 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝐾 ∈ HL) | |
15 | 6 | 3ad2ant2 1134 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → 𝑋 ∈ (Base‘𝐾)) |
16 | 2lplnm.j | . . . . . 6 ⊢ ∨ = (join‘𝐾) | |
17 | 2lplnm.c | . . . . . 6 ⊢ 𝐶 = ( ⋖ ‘𝐾) | |
18 | 4, 16, 8, 17 | cvrexch 39377 | . . . . 5 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) |
19 | 14, 15, 12, 18 | syl3anc 1371 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → ((𝑋 ∧ 𝑌)𝐶𝑌 ↔ 𝑋𝐶(𝑋 ∨ 𝑌))) |
20 | 19 | biimpar 477 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌)𝐶𝑌) |
21 | 2lplnm.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
22 | 4, 17, 21, 5 | llncvrlpln 39515 | . . 3 ⊢ (((𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌)𝐶𝑌) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
23 | 2, 11, 13, 20, 22 | syl31anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
24 | 1, 23 | mpbird 257 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) ∧ 𝑋𝐶(𝑋 ∨ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 joincjn 18381 meetcmee 18382 Latclat 18501 ⋖ ccvr 39218 HLchlt 39306 LLinesclln 39448 LPlanesclpl 39449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-lat 18502 df-clat 18569 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |