Step | Hyp | Ref
| Expression |
1 | | simp1 1136 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β πΎ β HL) |
2 | | simp3 1138 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β π β π) |
3 | | simp2 1137 |
. . . 4
β’ ((πΎ β HL β§ π β π β§ π β π) β π β π) |
4 | 1, 2, 3 | 3jca 1128 |
. . 3
β’ ((πΎ β HL β§ π β π β§ π β π) β (πΎ β HL β§ π β π β§ π β π)) |
5 | | lplnexat.l |
. . . 4
β’ β€ =
(leβπΎ) |
6 | | eqid 2732 |
. . . 4
β’ ( β
βπΎ) = ( β
βπΎ) |
7 | | lplnexat.n |
. . . 4
β’ π = (LLinesβπΎ) |
8 | | lplnexat.p |
. . . 4
β’ π = (LPlanesβπΎ) |
9 | 5, 6, 7, 8 | llncvrlpln2 38416 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π( β βπΎ)π) |
10 | 4, 9 | sylan 580 |
. 2
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π( β βπΎ)π) |
11 | | simpl1 1191 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β πΎ β HL) |
12 | | simpl3 1193 |
. . . . 5
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π β π) |
13 | | eqid 2732 |
. . . . . 6
β’
(BaseβπΎ) =
(BaseβπΎ) |
14 | 13, 7 | llnbase 38368 |
. . . . 5
β’ (π β π β π β (BaseβπΎ)) |
15 | 12, 14 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π β (BaseβπΎ)) |
16 | | simpl2 1192 |
. . . . 5
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π β π) |
17 | 13, 8 | lplnbase 38393 |
. . . . 5
β’ (π β π β π β (BaseβπΎ)) |
18 | 16, 17 | syl 17 |
. . . 4
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β π β (BaseβπΎ)) |
19 | | lplnexat.j |
. . . . 5
β’ β¨ =
(joinβπΎ) |
20 | | lplnexat.a |
. . . . 5
β’ π΄ = (AtomsβπΎ) |
21 | 13, 5, 19, 6, 20 | cvrval3 38272 |
. . . 4
β’ ((πΎ β HL β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π( β βπΎ)π β βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = π))) |
22 | 11, 15, 18, 21 | syl3anc 1371 |
. . 3
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β (π( β βπΎ)π β βπ β π΄ (Β¬ π β€ π β§ (π β¨ π) = π))) |
23 | | eqcom 2739 |
. . . . 5
β’ ((π β¨ π) = π β π = (π β¨ π)) |
24 | 23 | anbi2i 623 |
. . . 4
β’ ((Β¬
π β€ π β§ (π β¨ π) = π) β (Β¬ π β€ π β§ π = (π β¨ π))) |
25 | 24 | rexbii 3094 |
. . 3
β’
(βπ β
π΄ (Β¬ π β€ π β§ (π β¨ π) = π) β βπ β π΄ (Β¬ π β€ π β§ π = (π β¨ π))) |
26 | 22, 25 | bitrdi 286 |
. 2
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β (π( β βπΎ)π β βπ β π΄ (Β¬ π β€ π β§ π = (π β¨ π)))) |
27 | 10, 26 | mpbid 231 |
1
β’ (((πΎ β HL β§ π β π β§ π β π) β§ π β€ π) β βπ β π΄ (Β¬ π β€ π β§ π = (π β¨ π))) |