Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexatN Structured version   Visualization version   GIF version

Theorem lplnexatN 37577
Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexatN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   ,𝑞   𝑌,𝑞   𝑋,𝑞
Allowed substitution hints:   𝑃(𝑞)   (𝑞)   𝑁(𝑞)

Proof of Theorem lplnexatN
StepHypRef Expression
1 simp1 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝐾 ∈ HL)
2 simp3 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑌𝑁)
3 simp2 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑋𝑃)
41, 2, 33jca 1127 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃))
5 lplnexat.l . . . 4 = (le‘𝐾)
6 eqid 2738 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
7 lplnexat.n . . . 4 𝑁 = (LLines‘𝐾)
8 lplnexat.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8llncvrlpln2 37571 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
104, 9sylan 580 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
11 simpl1 1190 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
12 simpl3 1192 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌𝑁)
13 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 7llnbase 37523 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1512, 14syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌 ∈ (Base‘𝐾))
16 simpl2 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋𝑃)
1713, 8lplnbase 37548 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
1816, 17syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋 ∈ (Base‘𝐾))
19 lplnexat.j . . . . 5 = (join‘𝐾)
20 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2113, 5, 19, 6, 20cvrval3 37427 . . . 4 ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
2211, 15, 18, 21syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
23 eqcom 2745 . . . . 5 ((𝑌 𝑞) = 𝑋𝑋 = (𝑌 𝑞))
2423anbi2i 623 . . . 4 ((¬ 𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ (¬ 𝑞 𝑌𝑋 = (𝑌 𝑞)))
2524rexbii 3181 . . 3 (∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
2622, 25bitrdi 287 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞))))
2710, 26mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  ccvr 37276  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator