Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexatN Structured version   Visualization version   GIF version

Theorem lplnexatN 37504
Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexatN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   ,𝑞   𝑌,𝑞   𝑋,𝑞
Allowed substitution hints:   𝑃(𝑞)   (𝑞)   𝑁(𝑞)

Proof of Theorem lplnexatN
StepHypRef Expression
1 simp1 1134 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝐾 ∈ HL)
2 simp3 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑌𝑁)
3 simp2 1135 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑋𝑃)
41, 2, 33jca 1126 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃))
5 lplnexat.l . . . 4 = (le‘𝐾)
6 eqid 2738 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
7 lplnexat.n . . . 4 𝑁 = (LLines‘𝐾)
8 lplnexat.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8llncvrlpln2 37498 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
104, 9sylan 579 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
11 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
12 simpl3 1191 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌𝑁)
13 eqid 2738 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 7llnbase 37450 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1512, 14syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌 ∈ (Base‘𝐾))
16 simpl2 1190 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋𝑃)
1713, 8lplnbase 37475 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
1816, 17syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋 ∈ (Base‘𝐾))
19 lplnexat.j . . . . 5 = (join‘𝐾)
20 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2113, 5, 19, 6, 20cvrval3 37354 . . . 4 ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
2211, 15, 18, 21syl3anc 1369 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
23 eqcom 2745 . . . . 5 ((𝑌 𝑞) = 𝑋𝑋 = (𝑌 𝑞))
2423anbi2i 622 . . . 4 ((¬ 𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ (¬ 𝑞 𝑌𝑋 = (𝑌 𝑞)))
2524rexbii 3177 . . 3 (∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
2622, 25bitrdi 286 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞))))
2710, 26mpbid 231 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064   class class class wbr 5070  cfv 6418  (class class class)co 7255  Basecbs 16840  lecple 16895  joincjn 17944  ccvr 37203  Atomscatm 37204  HLchlt 37291  LLinesclln 37432  LPlanesclpl 37433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-llines 37439  df-lplanes 37440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator