| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnexatN | Structured version Visualization version GIF version | ||
| Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lplnexat.l | ⊢ ≤ = (le‘𝐾) |
| lplnexat.j | ⊢ ∨ = (join‘𝐾) |
| lplnexat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lplnexat.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnexat.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnexatN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝐾 ∈ HL) | |
| 2 | simp3 1139 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) | |
| 3 | simp2 1138 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑋 ∈ 𝑃) | |
| 4 | 1, 2, 3 | 3jca 1129 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → (𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃)) |
| 5 | lplnexat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 6 | eqid 2737 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 7 | lplnexat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | lplnexat.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 9 | 5, 6, 7, 8 | llncvrlpln2 39559 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
| 10 | 4, 9 | sylan 580 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
| 11 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) | |
| 12 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝑁) | |
| 13 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 7 | llnbase 39511 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ (Base‘𝐾)) |
| 16 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝑃) | |
| 17 | 13, 8 | lplnbase 39536 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
| 19 | lplnexat.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 20 | lplnexat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | 13, 5, 19, 6, 20 | cvrval3 39415 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
| 22 | 11, 15, 18, 21 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
| 23 | eqcom 2744 | . . . . 5 ⊢ ((𝑌 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑞)) | |
| 24 | 23 | anbi2i 623 | . . . 4 ⊢ ((¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| 25 | 24 | rexbii 3094 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| 26 | 22, 25 | bitrdi 287 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞)))) |
| 27 | 10, 26 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 lecple 17304 joincjn 18357 ⋖ ccvr 39263 Atomscatm 39264 HLchlt 39351 LLinesclln 39493 LPlanesclpl 39494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-proset 18340 df-poset 18359 df-plt 18375 df-lub 18391 df-glb 18392 df-join 18393 df-meet 18394 df-p0 18470 df-lat 18477 df-clat 18544 df-oposet 39177 df-ol 39179 df-oml 39180 df-covers 39267 df-ats 39268 df-atl 39299 df-cvlat 39323 df-hlat 39352 df-llines 39500 df-lplanes 39501 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |