Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnexatN Structured version   Visualization version   GIF version

Theorem lplnexatN 39581
Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
lplnexat.l = (le‘𝐾)
lplnexat.j = (join‘𝐾)
lplnexat.a 𝐴 = (Atoms‘𝐾)
lplnexat.n 𝑁 = (LLines‘𝐾)
lplnexat.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnexatN (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   ,𝑞   𝑌,𝑞   𝑋,𝑞
Allowed substitution hints:   𝑃(𝑞)   (𝑞)   𝑁(𝑞)

Proof of Theorem lplnexatN
StepHypRef Expression
1 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝐾 ∈ HL)
2 simp3 1138 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑌𝑁)
3 simp2 1137 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑋𝑃)
41, 2, 33jca 1128 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃))
5 lplnexat.l . . . 4 = (le‘𝐾)
6 eqid 2730 . . . 4 ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾)
7 lplnexat.n . . . 4 𝑁 = (LLines‘𝐾)
8 lplnexat.p . . . 4 𝑃 = (LPlanes‘𝐾)
95, 6, 7, 8llncvrlpln2 39575 . . 3 (((𝐾 ∈ HL ∧ 𝑌𝑁𝑋𝑃) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
104, 9sylan 580 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋)
11 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝐾 ∈ HL)
12 simpl3 1194 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌𝑁)
13 eqid 2730 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
1413, 7llnbase 39527 . . . . 5 (𝑌𝑁𝑌 ∈ (Base‘𝐾))
1512, 14syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑌 ∈ (Base‘𝐾))
16 simpl2 1193 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋𝑃)
1713, 8lplnbase 39552 . . . . 5 (𝑋𝑃𝑋 ∈ (Base‘𝐾))
1816, 17syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → 𝑋 ∈ (Base‘𝐾))
19 lplnexat.j . . . . 5 = (join‘𝐾)
20 lplnexat.a . . . . 5 𝐴 = (Atoms‘𝐾)
2113, 5, 19, 6, 20cvrval3 39431 . . . 4 ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
2211, 15, 18, 21syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋)))
23 eqcom 2737 . . . . 5 ((𝑌 𝑞) = 𝑋𝑋 = (𝑌 𝑞))
2423anbi2i 623 . . . 4 ((¬ 𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ (¬ 𝑞 𝑌𝑋 = (𝑌 𝑞)))
2524rexbii 3077 . . 3 (∃𝑞𝐴𝑞 𝑌 ∧ (𝑌 𝑞) = 𝑋) ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
2622, 25bitrdi 287 . 2 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞))))
2710, 26mpbid 232 1 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ 𝑌 𝑋) → ∃𝑞𝐴𝑞 𝑌𝑋 = (𝑌 𝑞)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2110  wrex 3054   class class class wbr 5089  cfv 6477  (class class class)co 7341  Basecbs 17112  lecple 17160  joincjn 18209  ccvr 39280  Atomscatm 39281  HLchlt 39368  LLinesclln 39509  LPlanesclpl 39510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18192  df-poset 18211  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18330  df-clat 18397  df-oposet 39194  df-ol 39196  df-oml 39197  df-covers 39284  df-ats 39285  df-atl 39316  df-cvlat 39340  df-hlat 39369  df-llines 39516  df-lplanes 39517
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator