Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnexatN | Structured version Visualization version GIF version |
Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
lplnexat.l | ⊢ ≤ = (le‘𝐾) |
lplnexat.j | ⊢ ∨ = (join‘𝐾) |
lplnexat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lplnexat.n | ⊢ 𝑁 = (LLines‘𝐾) |
lplnexat.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnexatN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1134 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝐾 ∈ HL) | |
2 | simp3 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) | |
3 | simp2 1135 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑋 ∈ 𝑃) | |
4 | 1, 2, 3 | 3jca 1126 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → (𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃)) |
5 | lplnexat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
6 | eqid 2738 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
7 | lplnexat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
8 | lplnexat.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
9 | 5, 6, 7, 8 | llncvrlpln2 37498 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
10 | 4, 9 | sylan 579 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
11 | simpl1 1189 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) | |
12 | simpl3 1191 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝑁) | |
13 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
14 | 13, 7 | llnbase 37450 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ (Base‘𝐾)) |
16 | simpl2 1190 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝑃) | |
17 | 13, 8 | lplnbase 37475 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
19 | lplnexat.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
20 | lplnexat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
21 | 13, 5, 19, 6, 20 | cvrval3 37354 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
22 | 11, 15, 18, 21 | syl3anc 1369 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
23 | eqcom 2745 | . . . . 5 ⊢ ((𝑌 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑞)) | |
24 | 23 | anbi2i 622 | . . . 4 ⊢ ((¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
25 | 24 | rexbii 3177 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
26 | 22, 25 | bitrdi 286 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞)))) |
27 | 10, 26 | mpbid 231 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 lecple 16895 joincjn 17944 ⋖ ccvr 37203 Atomscatm 37204 HLchlt 37291 LLinesclln 37432 LPlanesclpl 37433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-lat 18065 df-clat 18132 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |