| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnexatN | Structured version Visualization version GIF version | ||
| Description: Given a lattice line on a lattice plane, there is an atom whose join with the line equals the plane. (Contributed by NM, 29-Jun-2012.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| lplnexat.l | ⊢ ≤ = (le‘𝐾) |
| lplnexat.j | ⊢ ∨ = (join‘𝐾) |
| lplnexat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| lplnexat.n | ⊢ 𝑁 = (LLines‘𝐾) |
| lplnexat.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
| Ref | Expression |
|---|---|
| lplnexatN | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝐾 ∈ HL) | |
| 2 | simp3 1138 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑌 ∈ 𝑁) | |
| 3 | simp2 1137 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → 𝑋 ∈ 𝑃) | |
| 4 | 1, 2, 3 | 3jca 1128 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) → (𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃)) |
| 5 | lplnexat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
| 6 | eqid 2730 | . . . 4 ⊢ ( ⋖ ‘𝐾) = ( ⋖ ‘𝐾) | |
| 7 | lplnexat.n | . . . 4 ⊢ 𝑁 = (LLines‘𝐾) | |
| 8 | lplnexat.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
| 9 | 5, 6, 7, 8 | llncvrlpln2 39575 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑌 ∈ 𝑁 ∧ 𝑋 ∈ 𝑃) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
| 10 | 4, 9 | sylan 580 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌( ⋖ ‘𝐾)𝑋) |
| 11 | simpl1 1192 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝐾 ∈ HL) | |
| 12 | simpl3 1194 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ 𝑁) | |
| 13 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
| 14 | 13, 7 | llnbase 39527 | . . . . 5 ⊢ (𝑌 ∈ 𝑁 → 𝑌 ∈ (Base‘𝐾)) |
| 15 | 12, 14 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑌 ∈ (Base‘𝐾)) |
| 16 | simpl2 1193 | . . . . 5 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ 𝑃) | |
| 17 | 13, 8 | lplnbase 39552 | . . . . 5 ⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
| 18 | 16, 17 | syl 17 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → 𝑋 ∈ (Base‘𝐾)) |
| 19 | lplnexat.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 20 | lplnexat.a | . . . . 5 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 21 | 13, 5, 19, 6, 20 | cvrval3 39431 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑌 ∈ (Base‘𝐾) ∧ 𝑋 ∈ (Base‘𝐾)) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
| 22 | 11, 15, 18, 21 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋))) |
| 23 | eqcom 2737 | . . . . 5 ⊢ ((𝑌 ∨ 𝑞) = 𝑋 ↔ 𝑋 = (𝑌 ∨ 𝑞)) | |
| 24 | 23 | anbi2i 623 | . . . 4 ⊢ ((¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| 25 | 24 | rexbii 3077 | . . 3 ⊢ (∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ (𝑌 ∨ 𝑞) = 𝑋) ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| 26 | 22, 25 | bitrdi 287 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → (𝑌( ⋖ ‘𝐾)𝑋 ↔ ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞)))) |
| 27 | 10, 26 | mpbid 232 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑁) ∧ 𝑌 ≤ 𝑋) → ∃𝑞 ∈ 𝐴 (¬ 𝑞 ≤ 𝑌 ∧ 𝑋 = (𝑌 ∨ 𝑞))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ∃wrex 3054 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 lecple 17160 joincjn 18209 ⋖ ccvr 39280 Atomscatm 39281 HLchlt 39368 LLinesclln 39509 LPlanesclpl 39510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-lat 18330 df-clat 18397 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 df-lplanes 39517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |