Proof of Theorem 2lplnm2N
Step | Hyp | Ref
| Expression |
1 | | simp22 1206 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ 𝑃) |
2 | | simp1 1135 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝐾 ∈ HL) |
3 | | hllat 37377 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
4 | 3 | 3ad2ant1 1132 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝐾 ∈ Lat) |
5 | | simp21 1205 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ 𝑃) |
6 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝐾) =
(Base‘𝐾) |
7 | | 2lplnm2.p |
. . . . . 6
⊢ 𝑃 = (LPlanes‘𝐾) |
8 | 6, 7 | lplnbase 37548 |
. . . . 5
⊢ (𝑋 ∈ 𝑃 → 𝑋 ∈ (Base‘𝐾)) |
9 | 5, 8 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ∈ (Base‘𝐾)) |
10 | 6, 7 | lplnbase 37548 |
. . . . 5
⊢ (𝑌 ∈ 𝑃 → 𝑌 ∈ (Base‘𝐾)) |
11 | 1, 10 | syl 17 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑌 ∈ (Base‘𝐾)) |
12 | | 2lplnm2.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
13 | 6, 12 | latmcl 18158 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
14 | 4, 9, 11, 13 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∧ 𝑌) ∈ (Base‘𝐾)) |
15 | | 2lplnm2.l |
. . . . . . 7
⊢ ≤ =
(le‘𝐾) |
16 | | eqid 2738 |
. . . . . . 7
⊢
(join‘𝐾) =
(join‘𝐾) |
17 | | 2lplnm2.v |
. . . . . . 7
⊢ 𝑉 = (LVols‘𝐾) |
18 | 15, 16, 7, 17 | 2lplnj 37634 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋(join‘𝐾)𝑌) = 𝑊) |
19 | | simp23 1207 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑊 ∈ 𝑉) |
20 | 18, 19 | eqeltrd 2839 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋(join‘𝐾)𝑌) ∈ 𝑉) |
21 | 6, 15, 16 | latlej1 18166 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → 𝑋 ≤ (𝑋(join‘𝐾)𝑌)) |
22 | 4, 9, 11, 21 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑋 ≤ (𝑋(join‘𝐾)𝑌)) |
23 | | eqid 2738 |
. . . . . 6
⊢ ( ⋖
‘𝐾) = ( ⋖
‘𝐾) |
24 | 15, 23, 7, 17 | lplncvrlvol2 37629 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ (𝑋(join‘𝐾)𝑌) ∈ 𝑉) ∧ 𝑋 ≤ (𝑋(join‘𝐾)𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)) |
25 | 2, 5, 20, 22, 24 | syl31anc 1372 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌)) |
26 | 6, 16, 12, 23 | cvrexch 37434 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) → ((𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌 ↔ 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))) |
27 | 2, 9, 11, 26 | syl3anc 1370 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌 ↔ 𝑋( ⋖ ‘𝐾)(𝑋(join‘𝐾)𝑌))) |
28 | 25, 27 | mpbird 256 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) |
29 | | 2lplnm2.a |
. . . 4
⊢ 𝑁 = (LLines‘𝐾) |
30 | 6, 23, 29, 7 | llncvrlpln 37572 |
. . 3
⊢ (((𝐾 ∈ HL ∧ (𝑋 ∧ 𝑌) ∈ (Base‘𝐾) ∧ 𝑌 ∈ (Base‘𝐾)) ∧ (𝑋 ∧ 𝑌)( ⋖ ‘𝐾)𝑌) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
31 | 2, 14, 11, 28, 30 | syl31anc 1372 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → ((𝑋 ∧ 𝑌) ∈ 𝑁 ↔ 𝑌 ∈ 𝑃)) |
32 | 1, 31 | mpbird 256 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑊 ∈ 𝑉) ∧ (𝑋 ≤ 𝑊 ∧ 𝑌 ≤ 𝑊 ∧ 𝑋 ≠ 𝑌)) → (𝑋 ∧ 𝑌) ∈ 𝑁) |