![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elringlsm | Structured version Visualization version GIF version |
Description: Membership in a product of two subsets of a ring. (Contributed by Thierry Arnoux, 20-Jan-2024.) |
Ref | Expression |
---|---|
elringlsm.1 | ⊢ 𝐵 = (Base‘𝑅) |
elringlsm.2 | ⊢ · = (.r‘𝑅) |
elringlsm.3 | ⊢ 𝐺 = (mulGrp‘𝑅) |
elringlsm.4 | ⊢ × = (LSSum‘𝐺) |
elringlsm.6 | ⊢ (𝜑 → 𝐸 ⊆ 𝐵) |
elringlsm.7 | ⊢ (𝜑 → 𝐹 ⊆ 𝐵) |
Ref | Expression |
---|---|
elringlsm | ⊢ (𝜑 → (𝑍 ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 𝑍 = (𝑥 · 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elringlsm.3 | . . 3 ⊢ 𝐺 = (mulGrp‘𝑅) | |
2 | 1 | fvexi 6929 | . 2 ⊢ 𝐺 ∈ V |
3 | elringlsm.6 | . 2 ⊢ (𝜑 → 𝐸 ⊆ 𝐵) | |
4 | elringlsm.7 | . 2 ⊢ (𝜑 → 𝐹 ⊆ 𝐵) | |
5 | elringlsm.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 1, 5 | mgpbas 20161 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
7 | elringlsm.2 | . . . 4 ⊢ · = (.r‘𝑅) | |
8 | 1, 7 | mgpplusg 20159 | . . 3 ⊢ · = (+g‘𝐺) |
9 | elringlsm.4 | . . 3 ⊢ × = (LSSum‘𝐺) | |
10 | 6, 8, 9 | lsmelvalx 19676 | . 2 ⊢ ((𝐺 ∈ V ∧ 𝐸 ⊆ 𝐵 ∧ 𝐹 ⊆ 𝐵) → (𝑍 ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 𝑍 = (𝑥 · 𝑦))) |
11 | 2, 3, 4, 10 | mp3an2i 1466 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝐸 × 𝐹) ↔ ∃𝑥 ∈ 𝐸 ∃𝑦 ∈ 𝐹 𝑍 = (𝑥 · 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 ‘cfv 6568 (class class class)co 7443 Basecbs 17252 .rcmulr 17306 LSSumclsm 19670 mulGrpcmgp 20155 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-er 8757 df-en 8998 df-dom 8999 df-sdom 9000 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-sets 17205 df-slot 17223 df-ndx 17235 df-base 17253 df-plusg 17318 df-lsm 19672 df-mgp 20156 |
This theorem is referenced by: elringlsmd 33379 ringlsmss1 33381 ringlsmss2 33382 |
Copyright terms: Public domain | W3C validator |