Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb2 Structured version   Visualization version   GIF version

Theorem lsmsnorb2 33363
Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19239. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
lsmsnorb2.1 𝐵 = (Base‘𝐺)
lsmsnorb2.2 + = (+g𝐺)
lsmsnorb2.3 = (LSSum‘𝐺)
lsmsnorb2.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
lsmsnorb2.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb2.6 (𝜑𝐴𝐵)
lsmsnorb2.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb2 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝐺,𝑥,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   + (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb2
StepHypRef Expression
1 eqid 2729 . . 3 (oppg𝐺) = (oppg𝐺)
2 lsmsnorb2.3 . . 3 = (LSSum‘𝐺)
31, 2oppglsm 19572 . 2 (𝐴(LSSum‘(oppg𝐺)){𝑋}) = ({𝑋} 𝐴)
4 lsmsnorb2.1 . . . 4 𝐵 = (Base‘𝐺)
51, 4oppgbas 19283 . . 3 𝐵 = (Base‘(oppg𝐺))
6 eqid 2729 . . 3 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
7 eqid 2729 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmsnorb2.4 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
9 lsmsnorb2.2 . . . . . . . . 9 + = (+g𝐺)
109, 1, 6oppgplus 19281 . . . . . . . 8 (𝑔(+g‘(oppg𝐺))𝑥) = (𝑥 + 𝑔)
1110eqeq1i 2734 . . . . . . 7 ((𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦)
1211rexbii 3076 . . . . . 6 (∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)
1312anbi2i 623 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦))
1413opabbii 5174 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
158, 14eqtr4i 2755 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)}
16 lsmsnorb2.5 . . . 4 (𝜑𝐺 ∈ Mnd)
171oppgmnd 19286 . . . 4 (𝐺 ∈ Mnd → (oppg𝐺) ∈ Mnd)
1816, 17syl 17 . . 3 (𝜑 → (oppg𝐺) ∈ Mnd)
19 lsmsnorb2.6 . . 3 (𝜑𝐴𝐵)
20 lsmsnorb2.7 . . 3 (𝜑𝑋𝐵)
215, 6, 7, 15, 18, 19, 20lsmsnorb 33362 . 2 (𝜑 → (𝐴(LSSum‘(oppg𝐺)){𝑋}) = [𝑋] )
223, 21eqtr3id 2778 1 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  wss 3914  {csn 4589  {cpr 4591  {copab 5169  cfv 6511  (class class class)co 7387  [cec 8669  Basecbs 17179  +gcplusg 17220  Mndcmnd 18661  oppgcoppg 19277  LSSumclsm 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-ec 8673  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-oppg 19278  df-lsm 19566
This theorem is referenced by:  quslsm  33376
  Copyright terms: Public domain W3C validator