Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb2 Structured version   Visualization version   GIF version

Theorem lsmsnorb2 33364
Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19221. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
lsmsnorb2.1 𝐵 = (Base‘𝐺)
lsmsnorb2.2 + = (+g𝐺)
lsmsnorb2.3 = (LSSum‘𝐺)
lsmsnorb2.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
lsmsnorb2.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb2.6 (𝜑𝐴𝐵)
lsmsnorb2.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb2 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝐺,𝑥,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   + (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb2
StepHypRef Expression
1 eqid 2733 . . 3 (oppg𝐺) = (oppg𝐺)
2 lsmsnorb2.3 . . 3 = (LSSum‘𝐺)
31, 2oppglsm 19556 . 2 (𝐴(LSSum‘(oppg𝐺)){𝑋}) = ({𝑋} 𝐴)
4 lsmsnorb2.1 . . . 4 𝐵 = (Base‘𝐺)
51, 4oppgbas 19265 . . 3 𝐵 = (Base‘(oppg𝐺))
6 eqid 2733 . . 3 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
7 eqid 2733 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmsnorb2.4 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
9 lsmsnorb2.2 . . . . . . . . 9 + = (+g𝐺)
109, 1, 6oppgplus 19263 . . . . . . . 8 (𝑔(+g‘(oppg𝐺))𝑥) = (𝑥 + 𝑔)
1110eqeq1i 2738 . . . . . . 7 ((𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦)
1211rexbii 3080 . . . . . 6 (∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)
1312anbi2i 623 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦))
1413opabbii 5160 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
158, 14eqtr4i 2759 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)}
16 lsmsnorb2.5 . . . 4 (𝜑𝐺 ∈ Mnd)
171oppgmnd 19268 . . . 4 (𝐺 ∈ Mnd → (oppg𝐺) ∈ Mnd)
1816, 17syl 17 . . 3 (𝜑 → (oppg𝐺) ∈ Mnd)
19 lsmsnorb2.6 . . 3 (𝜑𝐴𝐵)
20 lsmsnorb2.7 . . 3 (𝜑𝑋𝐵)
215, 6, 7, 15, 18, 19, 20lsmsnorb 33363 . 2 (𝜑 → (𝐴(LSSum‘(oppg𝐺)){𝑋}) = [𝑋] )
223, 21eqtr3id 2782 1 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wrex 3057  wss 3898  {csn 4575  {cpr 4577  {copab 5155  cfv 6486  (class class class)co 7352  [cec 8626  Basecbs 17122  +gcplusg 17163  Mndcmnd 18644  oppgcoppg 19259  LSSumclsm 19548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-ec 8630  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-plusg 17176  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-oppg 19260  df-lsm 19550
This theorem is referenced by:  quslsm  33377
  Copyright terms: Public domain W3C validator