| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsnorb2 | Structured version Visualization version GIF version | ||
| Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19204. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| lsmsnorb2.1 | ⊢ 𝐵 = (Base‘𝐺) |
| lsmsnorb2.2 | ⊢ + = (+g‘𝐺) |
| lsmsnorb2.3 | ⊢ ⊕ = (LSSum‘𝐺) |
| lsmsnorb2.4 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
| lsmsnorb2.5 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| lsmsnorb2.6 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| lsmsnorb2.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| lsmsnorb2 | ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 2 | lsmsnorb2.3 | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
| 3 | 1, 2 | oppglsm 19539 | . 2 ⊢ (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = ({𝑋} ⊕ 𝐴) |
| 4 | lsmsnorb2.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | 1, 4 | oppgbas 19248 | . . 3 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
| 6 | eqid 2729 | . . 3 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
| 7 | eqid 2729 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
| 8 | lsmsnorb2.4 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} | |
| 9 | lsmsnorb2.2 | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
| 10 | 9, 1, 6 | oppgplus 19246 | . . . . . . . 8 ⊢ (𝑔(+g‘(oppg‘𝐺))𝑥) = (𝑥 + 𝑔) |
| 11 | 10 | eqeq1i 2734 | . . . . . . 7 ⊢ ((𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦) |
| 12 | 11 | rexbii 3076 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦) |
| 13 | 12 | anbi2i 623 | . . . . 5 ⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)) |
| 14 | 13 | opabbii 5162 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
| 15 | 8, 14 | eqtr4i 2755 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} |
| 16 | lsmsnorb2.5 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
| 17 | 1 | oppgmnd 19251 | . . . 4 ⊢ (𝐺 ∈ Mnd → (oppg‘𝐺) ∈ Mnd) |
| 18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (oppg‘𝐺) ∈ Mnd) |
| 19 | lsmsnorb2.6 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 20 | lsmsnorb2.7 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | 5, 6, 7, 15, 18, 19, 20 | lsmsnorb 33338 | . 2 ⊢ (𝜑 → (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = [𝑋] ∼ ) |
| 22 | 3, 21 | eqtr3id 2778 | 1 ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3905 {csn 4579 {cpr 4581 {copab 5157 ‘cfv 6486 (class class class)co 7353 [cec 8630 Basecbs 17138 +gcplusg 17179 Mndcmnd 18626 oppgcoppg 19242 LSSumclsm 19531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-tpos 8166 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-ec 8634 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-plusg 17192 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-oppg 19243 df-lsm 19533 |
| This theorem is referenced by: quslsm 33352 |
| Copyright terms: Public domain | W3C validator |