![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsnorb2 | Structured version Visualization version GIF version |
Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19223. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
lsmsnorb2.1 | ⊢ 𝐵 = (Base‘𝐺) |
lsmsnorb2.2 | ⊢ + = (+g‘𝐺) |
lsmsnorb2.3 | ⊢ ⊕ = (LSSum‘𝐺) |
lsmsnorb2.4 | ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
lsmsnorb2.5 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
lsmsnorb2.6 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
lsmsnorb2.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
lsmsnorb2 | ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2726 | . . 3 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
2 | lsmsnorb2.3 | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 1, 2 | oppglsm 19562 | . 2 ⊢ (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = ({𝑋} ⊕ 𝐴) |
4 | lsmsnorb2.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 1, 4 | oppgbas 19268 | . . 3 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
6 | eqid 2726 | . . 3 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
7 | eqid 2726 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
8 | lsmsnorb2.4 | . . . 4 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} | |
9 | lsmsnorb2.2 | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
10 | 9, 1, 6 | oppgplus 19265 | . . . . . . . 8 ⊢ (𝑔(+g‘(oppg‘𝐺))𝑥) = (𝑥 + 𝑔) |
11 | 10 | eqeq1i 2731 | . . . . . . 7 ⊢ ((𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦) |
12 | 11 | rexbii 3088 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦) |
13 | 12 | anbi2i 622 | . . . . 5 ⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)) |
14 | 13 | opabbii 5208 | . . . 4 ⊢ {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
15 | 8, 14 | eqtr4i 2757 | . . 3 ⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} |
16 | lsmsnorb2.5 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
17 | 1 | oppgmnd 19273 | . . . 4 ⊢ (𝐺 ∈ Mnd → (oppg‘𝐺) ∈ Mnd) |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (oppg‘𝐺) ∈ Mnd) |
19 | lsmsnorb2.6 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
20 | lsmsnorb2.7 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 5, 6, 7, 15, 18, 19, 20 | lsmsnorb 33007 | . 2 ⊢ (𝜑 → (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = [𝑋] ∼ ) |
22 | 3, 21 | eqtr3id 2780 | 1 ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ⊆ wss 3943 {csn 4623 {cpr 4625 {copab 5203 ‘cfv 6537 (class class class)co 7405 [cec 8703 Basecbs 17153 +gcplusg 17206 Mndcmnd 18667 oppgcoppg 19261 LSSumclsm 19554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-ec 8707 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-plusg 17219 df-0g 17396 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-oppg 19262 df-lsm 19556 |
This theorem is referenced by: quslsm 33022 |
Copyright terms: Public domain | W3C validator |