![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lsmsnorb2 | Structured version Visualization version GIF version |
Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19156. (Contributed by Thierry Arnoux, 24-Jul-2024.) |
Ref | Expression |
---|---|
lsmsnorb2.1 | ⊢ 𝐵 = (Base‘𝐺) |
lsmsnorb2.2 | ⊢ + = (+g‘𝐺) |
lsmsnorb2.3 | ⊢ ⊕ = (LSSum‘𝐺) |
lsmsnorb2.4 | ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
lsmsnorb2.5 | ⊢ (𝜑 → 𝐺 ∈ Mnd) |
lsmsnorb2.6 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
lsmsnorb2.7 | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
lsmsnorb2 | ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
2 | lsmsnorb2.3 | . . 3 ⊢ ⊕ = (LSSum‘𝐺) | |
3 | 1, 2 | oppglsm 19494 | . 2 ⊢ (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = ({𝑋} ⊕ 𝐴) |
4 | lsmsnorb2.1 | . . . 4 ⊢ 𝐵 = (Base‘𝐺) | |
5 | 1, 4 | oppgbas 19200 | . . 3 ⊢ 𝐵 = (Base‘(oppg‘𝐺)) |
6 | eqid 2733 | . . 3 ⊢ (+g‘(oppg‘𝐺)) = (+g‘(oppg‘𝐺)) | |
7 | eqid 2733 | . . 3 ⊢ (LSSum‘(oppg‘𝐺)) = (LSSum‘(oppg‘𝐺)) | |
8 | lsmsnorb2.4 | . . . 4 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} | |
9 | lsmsnorb2.2 | . . . . . . . . 9 ⊢ + = (+g‘𝐺) | |
10 | 9, 1, 6 | oppgplus 19197 | . . . . . . . 8 ⊢ (𝑔(+g‘(oppg‘𝐺))𝑥) = (𝑥 + 𝑔) |
11 | 10 | eqeq1i 2738 | . . . . . . 7 ⊢ ((𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦) |
12 | 11 | rexbii 3095 | . . . . . 6 ⊢ (∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦 ↔ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦) |
13 | 12 | anbi2i 624 | . . . . 5 ⊢ (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)) |
14 | 13 | opabbii 5211 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑥 + 𝑔) = 𝑦)} |
15 | 8, 14 | eqtr4i 2764 | . . 3 ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔 ∈ 𝐴 (𝑔(+g‘(oppg‘𝐺))𝑥) = 𝑦)} |
16 | lsmsnorb2.5 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Mnd) | |
17 | 1 | oppgmnd 19205 | . . . 4 ⊢ (𝐺 ∈ Mnd → (oppg‘𝐺) ∈ Mnd) |
18 | 16, 17 | syl 17 | . . 3 ⊢ (𝜑 → (oppg‘𝐺) ∈ Mnd) |
19 | lsmsnorb2.6 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
20 | lsmsnorb2.7 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | 5, 6, 7, 15, 18, 19, 20 | lsmsnorb 32459 | . 2 ⊢ (𝜑 → (𝐴(LSSum‘(oppg‘𝐺)){𝑋}) = [𝑋] ∼ ) |
22 | 3, 21 | eqtr3id 2787 | 1 ⊢ (𝜑 → ({𝑋} ⊕ 𝐴) = [𝑋] ∼ ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⊆ wss 3946 {csn 4624 {cpr 4626 {copab 5206 ‘cfv 6535 (class class class)co 7396 [cec 8689 Basecbs 17131 +gcplusg 17184 Mndcmnd 18612 oppgcoppg 19193 LSSumclsm 19486 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-tpos 8198 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-er 8691 df-ec 8693 df-en 8928 df-dom 8929 df-sdom 8930 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-nn 12200 df-2 12262 df-sets 17084 df-slot 17102 df-ndx 17114 df-base 17132 df-plusg 17197 df-0g 17374 df-mgm 18548 df-sgrp 18597 df-mnd 18613 df-oppg 19194 df-lsm 19488 |
This theorem is referenced by: quslsm 32474 |
Copyright terms: Public domain | W3C validator |