Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsmsnorb2 Structured version   Visualization version   GIF version

Theorem lsmsnorb2 33369
Description: The sumset of a single element with a group is the element's orbit by the group action. See gaorb 19245. (Contributed by Thierry Arnoux, 24-Jul-2024.)
Hypotheses
Ref Expression
lsmsnorb2.1 𝐵 = (Base‘𝐺)
lsmsnorb2.2 + = (+g𝐺)
lsmsnorb2.3 = (LSSum‘𝐺)
lsmsnorb2.4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
lsmsnorb2.5 (𝜑𝐺 ∈ Mnd)
lsmsnorb2.6 (𝜑𝐴𝐵)
lsmsnorb2.7 (𝜑𝑋𝐵)
Assertion
Ref Expression
lsmsnorb2 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Distinct variable groups:   𝐴,𝑔,𝑥,𝑦   𝑥,𝐵,𝑦   𝑔,𝐺,𝑥,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑔)   𝐵(𝑔)   + (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)   (𝑥,𝑦,𝑔)

Proof of Theorem lsmsnorb2
StepHypRef Expression
1 eqid 2730 . . 3 (oppg𝐺) = (oppg𝐺)
2 lsmsnorb2.3 . . 3 = (LSSum‘𝐺)
31, 2oppglsm 19578 . 2 (𝐴(LSSum‘(oppg𝐺)){𝑋}) = ({𝑋} 𝐴)
4 lsmsnorb2.1 . . . 4 𝐵 = (Base‘𝐺)
51, 4oppgbas 19289 . . 3 𝐵 = (Base‘(oppg𝐺))
6 eqid 2730 . . 3 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
7 eqid 2730 . . 3 (LSSum‘(oppg𝐺)) = (LSSum‘(oppg𝐺))
8 lsmsnorb2.4 . . . 4 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
9 lsmsnorb2.2 . . . . . . . . 9 + = (+g𝐺)
109, 1, 6oppgplus 19287 . . . . . . . 8 (𝑔(+g‘(oppg𝐺))𝑥) = (𝑥 + 𝑔)
1110eqeq1i 2735 . . . . . . 7 ((𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ (𝑥 + 𝑔) = 𝑦)
1211rexbii 3077 . . . . . 6 (∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦 ↔ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)
1312anbi2i 623 . . . . 5 (({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦) ↔ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦))
1413opabbii 5176 . . . 4 {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)} = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑥 + 𝑔) = 𝑦)}
158, 14eqtr4i 2756 . . 3 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝐵 ∧ ∃𝑔𝐴 (𝑔(+g‘(oppg𝐺))𝑥) = 𝑦)}
16 lsmsnorb2.5 . . . 4 (𝜑𝐺 ∈ Mnd)
171oppgmnd 19292 . . . 4 (𝐺 ∈ Mnd → (oppg𝐺) ∈ Mnd)
1816, 17syl 17 . . 3 (𝜑 → (oppg𝐺) ∈ Mnd)
19 lsmsnorb2.6 . . 3 (𝜑𝐴𝐵)
20 lsmsnorb2.7 . . 3 (𝜑𝑋𝐵)
215, 6, 7, 15, 18, 19, 20lsmsnorb 33368 . 2 (𝜑 → (𝐴(LSSum‘(oppg𝐺)){𝑋}) = [𝑋] )
223, 21eqtr3id 2779 1 (𝜑 → ({𝑋} 𝐴) = [𝑋] )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3054  wss 3916  {csn 4591  {cpr 4593  {copab 5171  cfv 6513  (class class class)co 7389  [cec 8671  Basecbs 17185  +gcplusg 17226  Mndcmnd 18667  oppgcoppg 19283  LSSumclsm 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-ec 8675  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-oppg 19284  df-lsm 19572
This theorem is referenced by:  quslsm  33382
  Copyright terms: Public domain W3C validator