MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subglsm Structured version   Visualization version   GIF version

Theorem subglsm 19390
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subglsm.h 𝐻 = (𝐺s 𝑆)
subglsm.s = (LSSum‘𝐺)
subglsm.a 𝐴 = (LSSum‘𝐻)
Assertion
Ref Expression
subglsm ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))

Proof of Theorem subglsm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1204 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 subglsm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2738 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 17107 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (+g𝐺) = (+g𝐻))
65oveqd 7367 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
76mpoeq3dva 7427 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
87rneqd 5890 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
9 subgrcl 18868 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1093ad2ant1 1134 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐺 ∈ Grp)
11 simp2 1138 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
12 eqid 2738 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18864 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
14133ad2ant1 1134 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14sstrd 3953 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐺))
16 simp3 1139 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1716, 14sstrd 3953 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐺))
18 subglsm.s . . . 4 = (LSSum‘𝐺)
1912, 3, 18lsmvalx 19356 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
2010, 15, 17, 19syl3anc 1372 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
212subggrp 18866 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
22213ad2ant1 1134 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐻 ∈ Grp)
232subgbas 18867 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
24233ad2ant1 1134 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 = (Base‘𝐻))
2511, 24sseqtrd 3983 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐻))
2616, 24sseqtrd 3983 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐻))
27 eqid 2738 . . . 4 (Base‘𝐻) = (Base‘𝐻)
28 eqid 2738 . . . 4 (+g𝐻) = (+g𝐻)
29 subglsm.a . . . 4 𝐴 = (LSSum‘𝐻)
3027, 28, 29lsmvalx 19356 . . 3 ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
3122, 25, 26, 30syl3anc 1372 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
328, 20, 313eqtr4d 2788 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1088   = wceq 1542  wcel 2107  wss 3909  ran crn 5632  cfv 6492  (class class class)co 7350  cmpo 7352  Basecbs 17019  s cress 17048  +gcplusg 17069  Grpcgrp 18684  SubGrpcsubg 18857  LSSumclsm 19351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-en 8818  df-dom 8819  df-sdom 8820  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-nn 12088  df-2 12150  df-sets 16972  df-slot 16990  df-ndx 17002  df-base 17020  df-ress 17049  df-plusg 17082  df-subg 18860  df-lsm 19353
This theorem is referenced by:  pgpfaclem1  19795
  Copyright terms: Public domain W3C validator