MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subglsm Structured version   Visualization version   GIF version

Theorem subglsm 18802
Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.)
Hypotheses
Ref Expression
subglsm.h 𝐻 = (𝐺s 𝑆)
subglsm.s = (LSSum‘𝐺)
subglsm.a 𝐴 = (LSSum‘𝐻)
Assertion
Ref Expression
subglsm ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))

Proof of Theorem subglsm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1199 . . . . . 6 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → 𝑆 ∈ (SubGrp‘𝐺))
2 subglsm.h . . . . . . 7 𝐻 = (𝐺s 𝑆)
3 eqid 2824 . . . . . . 7 (+g𝐺) = (+g𝐺)
42, 3ressplusg 16615 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → (+g𝐺) = (+g𝐻))
51, 4syl 17 . . . . 5 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (+g𝐺) = (+g𝐻))
65oveqd 7176 . . . 4 (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) ∧ 𝑥𝑇𝑦𝑈) → (𝑥(+g𝐺)𝑦) = (𝑥(+g𝐻)𝑦))
76mpoeq3dva 7234 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
87rneqd 5811 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
9 subgrcl 18287 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1093ad2ant1 1129 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐺 ∈ Grp)
11 simp2 1133 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇𝑆)
12 eqid 2824 . . . . . 6 (Base‘𝐺) = (Base‘𝐺)
1312subgss 18283 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺))
14133ad2ant1 1129 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 ⊆ (Base‘𝐺))
1511, 14sstrd 3980 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐺))
16 simp3 1134 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈𝑆)
1716, 14sstrd 3980 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐺))
18 subglsm.s . . . 4 = (LSSum‘𝐺)
1912, 3, 18lsmvalx 18767 . . 3 ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
2010, 15, 17, 19syl3anc 1367 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐺)𝑦)))
212subggrp 18285 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp)
22213ad2ant1 1129 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝐻 ∈ Grp)
232subgbas 18286 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻))
24233ad2ant1 1129 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑆 = (Base‘𝐻))
2511, 24sseqtrd 4010 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑇 ⊆ (Base‘𝐻))
2616, 24sseqtrd 4010 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → 𝑈 ⊆ (Base‘𝐻))
27 eqid 2824 . . . 4 (Base‘𝐻) = (Base‘𝐻)
28 eqid 2824 . . . 4 (+g𝐻) = (+g𝐻)
29 subglsm.a . . . 4 𝐴 = (LSSum‘𝐻)
3027, 28, 29lsmvalx 18767 . . 3 ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
3122, 25, 26, 30syl3anc 1367 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇𝐴𝑈) = ran (𝑥𝑇, 𝑦𝑈 ↦ (𝑥(+g𝐻)𝑦)))
328, 20, 313eqtr4d 2869 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇𝑆𝑈𝑆) → (𝑇 𝑈) = (𝑇𝐴𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1536  wcel 2113  wss 3939  ran crn 5559  cfv 6358  (class class class)co 7159  cmpo 7161  Basecbs 16486  s cress 16487  +gcplusg 16568  Grpcgrp 18106  SubGrpcsubg 18276  LSSumclsm 18762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-subg 18279  df-lsm 18764
This theorem is referenced by:  pgpfaclem1  19206
  Copyright terms: Public domain W3C validator