| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subglsm | Structured version Visualization version GIF version | ||
| Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| subglsm.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subglsm.s | ⊢ ⊕ = (LSSum‘𝐺) |
| subglsm.a | ⊢ 𝐴 = (LSSum‘𝐻) |
| Ref | Expression |
|---|---|
| subglsm | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1204 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subglsm.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 3 | eqid 2733 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 2, 3 | ressplusg 17199 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (+g‘𝐺) = (+g‘𝐻)) |
| 6 | 5 | oveqd 7371 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 7 | 6 | mpoeq3dva 7431 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 8 | 7 | rneqd 5884 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 9 | subgrcl 19048 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐺 ∈ Grp) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 12 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | 12 | subgss 19044 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 14 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 11, 14 | sstrd 3941 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐺)) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
| 17 | 16, 14 | sstrd 3941 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐺)) |
| 18 | subglsm.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 19 | 12, 3, 18 | lsmvalx 19555 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 20 | 10, 15, 17, 19 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 21 | 2 | subggrp 19046 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐻 ∈ Grp) |
| 23 | 2 | subgbas 19047 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 = (Base‘𝐻)) |
| 25 | 11, 24 | sseqtrd 3967 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐻)) |
| 26 | 16, 24 | sseqtrd 3967 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐻)) |
| 27 | eqid 2733 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 28 | eqid 2733 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 29 | subglsm.a | . . . 4 ⊢ 𝐴 = (LSSum‘𝐻) | |
| 30 | 27, 28, 29 | lsmvalx 19555 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 31 | 22, 25, 26, 30 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 32 | 8, 20, 31 | 3eqtr4d 2778 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ran crn 5622 ‘cfv 6488 (class class class)co 7354 ∈ cmpo 7356 Basecbs 17124 ↾s cress 17145 +gcplusg 17165 Grpcgrp 18850 SubGrpcsubg 19037 LSSumclsm 19550 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-er 8630 df-en 8878 df-dom 8879 df-sdom 8880 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-subg 19040 df-lsm 19552 |
| This theorem is referenced by: pgpfaclem1 19999 |
| Copyright terms: Public domain | W3C validator |