| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subglsm | Structured version Visualization version GIF version | ||
| Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| subglsm.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subglsm.s | ⊢ ⊕ = (LSSum‘𝐺) |
| subglsm.a | ⊢ 𝐴 = (LSSum‘𝐻) |
| Ref | Expression |
|---|---|
| subglsm | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1204 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subglsm.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 3 | eqid 2731 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 2, 3 | ressplusg 17195 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (+g‘𝐺) = (+g‘𝐻)) |
| 6 | 5 | oveqd 7363 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 7 | 6 | mpoeq3dva 7423 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 8 | 7 | rneqd 5878 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 9 | subgrcl 19044 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐺 ∈ Grp) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 12 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | 12 | subgss 19040 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 14 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 11, 14 | sstrd 3945 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐺)) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
| 17 | 16, 14 | sstrd 3945 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐺)) |
| 18 | subglsm.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 19 | 12, 3, 18 | lsmvalx 19552 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 20 | 10, 15, 17, 19 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 21 | 2 | subggrp 19042 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐻 ∈ Grp) |
| 23 | 2 | subgbas 19043 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 = (Base‘𝐻)) |
| 25 | 11, 24 | sseqtrd 3971 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐻)) |
| 26 | 16, 24 | sseqtrd 3971 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐻)) |
| 27 | eqid 2731 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 28 | eqid 2731 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 29 | subglsm.a | . . . 4 ⊢ 𝐴 = (LSSum‘𝐻) | |
| 30 | 27, 28, 29 | lsmvalx 19552 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 31 | 22, 25, 26, 30 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 32 | 8, 20, 31 | 3eqtr4d 2776 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3902 ran crn 5617 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 Grpcgrp 18846 SubGrpcsubg 19033 LSSumclsm 19547 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-subg 19036 df-lsm 19549 |
| This theorem is referenced by: pgpfaclem1 19996 |
| Copyright terms: Public domain | W3C validator |