| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subglsm | Structured version Visualization version GIF version | ||
| Description: The subgroup sum evaluated within a subgroup. (Contributed by Mario Carneiro, 27-Apr-2016.) |
| Ref | Expression |
|---|---|
| subglsm.h | ⊢ 𝐻 = (𝐺 ↾s 𝑆) |
| subglsm.s | ⊢ ⊕ = (LSSum‘𝐺) |
| subglsm.a | ⊢ 𝐴 = (LSSum‘𝐻) |
| Ref | Expression |
|---|---|
| subglsm | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp11 1204 | . . . . . 6 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subglsm.h | . . . . . . 7 ⊢ 𝐻 = (𝐺 ↾s 𝑆) | |
| 3 | eqid 2729 | . . . . . . 7 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 4 | 2, 3 | ressplusg 17213 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (+g‘𝐺) = (+g‘𝐻)) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (+g‘𝐺) = (+g‘𝐻)) |
| 6 | 5 | oveqd 7370 | . . . 4 ⊢ (((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑈) → (𝑥(+g‘𝐺)𝑦) = (𝑥(+g‘𝐻)𝑦)) |
| 7 | 6 | mpoeq3dva 7430 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 8 | 7 | rneqd 5884 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦)) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 9 | subgrcl 19028 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 10 | 9 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐺 ∈ Grp) |
| 11 | simp2 1137 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ 𝑆) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 13 | 12 | subgss 19024 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ (Base‘𝐺)) |
| 14 | 13 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 ⊆ (Base‘𝐺)) |
| 15 | 11, 14 | sstrd 3948 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐺)) |
| 16 | simp3 1138 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ 𝑆) | |
| 17 | 16, 14 | sstrd 3948 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐺)) |
| 18 | subglsm.s | . . . 4 ⊢ ⊕ = (LSSum‘𝐺) | |
| 19 | 12, 3, 18 | lsmvalx 19536 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 20 | 10, 15, 17, 19 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐺)𝑦))) |
| 21 | 2 | subggrp 19026 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐻 ∈ Grp) |
| 22 | 21 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝐻 ∈ Grp) |
| 23 | 2 | subgbas 19027 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 = (Base‘𝐻)) |
| 24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑆 = (Base‘𝐻)) |
| 25 | 11, 24 | sseqtrd 3974 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑇 ⊆ (Base‘𝐻)) |
| 26 | 16, 24 | sseqtrd 3974 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → 𝑈 ⊆ (Base‘𝐻)) |
| 27 | eqid 2729 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 28 | eqid 2729 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 29 | subglsm.a | . . . 4 ⊢ 𝐴 = (LSSum‘𝐻) | |
| 30 | 27, 28, 29 | lsmvalx 19536 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐻) ∧ 𝑈 ⊆ (Base‘𝐻)) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 31 | 22, 25, 26, 30 | syl3anc 1373 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇𝐴𝑈) = ran (𝑥 ∈ 𝑇, 𝑦 ∈ 𝑈 ↦ (𝑥(+g‘𝐻)𝑦))) |
| 32 | 8, 20, 31 | 3eqtr4d 2774 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ 𝑆 ∧ 𝑈 ⊆ 𝑆) → (𝑇 ⊕ 𝑈) = (𝑇𝐴𝑈)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ran crn 5624 ‘cfv 6486 (class class class)co 7353 ∈ cmpo 7355 Basecbs 17138 ↾s cress 17159 +gcplusg 17179 Grpcgrp 18830 SubGrpcsubg 19017 LSSumclsm 19531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-subg 19020 df-lsm 19533 |
| This theorem is referenced by: pgpfaclem1 19980 |
| Copyright terms: Public domain | W3C validator |