![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dochexmidlem5 | Structured version Visualization version GIF version |
Description: Lemma for dochexmid 41450. (Contributed by NM, 15-Jan-2015.) |
Ref | Expression |
---|---|
dochexmidlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dochexmidlem1.o | ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) |
dochexmidlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
dochexmidlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
dochexmidlem1.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
dochexmidlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
dochexmidlem1.p | ⊢ ⊕ = (LSSum‘𝑈) |
dochexmidlem1.a | ⊢ 𝐴 = (LSAtoms‘𝑈) |
dochexmidlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
dochexmidlem1.x | ⊢ (𝜑 → 𝑋 ∈ 𝑆) |
dochexmidlem5.pp | ⊢ (𝜑 → 𝑝 ∈ 𝐴) |
dochexmidlem5.z | ⊢ 0 = (0g‘𝑈) |
dochexmidlem5.m | ⊢ 𝑀 = (𝑋 ⊕ 𝑝) |
dochexmidlem5.xn | ⊢ (𝜑 → 𝑋 ≠ { 0 }) |
dochexmidlem5.pl | ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
Ref | Expression |
---|---|
dochexmidlem5 | ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem5.pl | . 2 ⊢ (𝜑 → ¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) | |
2 | dochexmidlem1.s | . . . . . 6 ⊢ 𝑆 = (LSubSp‘𝑈) | |
3 | dochexmidlem5.z | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
4 | dochexmidlem1.a | . . . . . 6 ⊢ 𝐴 = (LSAtoms‘𝑈) | |
5 | dochexmidlem1.h | . . . . . . . 8 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | dochexmidlem1.u | . . . . . . . 8 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
7 | dochexmidlem1.k | . . . . . . . 8 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
8 | 5, 6, 7 | dvhlmod 41092 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
9 | 8 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 }) → 𝑈 ∈ LMod) |
10 | dochexmidlem1.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ 𝑆) | |
11 | dochexmidlem1.v | . . . . . . . . . . 11 ⊢ 𝑉 = (Base‘𝑈) | |
12 | 11, 2 | lssss 20951 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ⊆ 𝑉) |
13 | 10, 12 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
14 | dochexmidlem1.o | . . . . . . . . . 10 ⊢ ⊥ = ((ocH‘𝐾)‘𝑊) | |
15 | 5, 6, 11, 2, 14 | dochlss 41336 | . . . . . . . . 9 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ⊆ 𝑉) → ( ⊥ ‘𝑋) ∈ 𝑆) |
16 | 7, 13, 15 | syl2anc 584 | . . . . . . . 8 ⊢ (𝜑 → ( ⊥ ‘𝑋) ∈ 𝑆) |
17 | dochexmidlem5.m | . . . . . . . . 9 ⊢ 𝑀 = (𝑋 ⊕ 𝑝) | |
18 | dochexmidlem5.pp | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑝 ∈ 𝐴) | |
19 | 2, 4, 8, 18 | lsatlssel 38978 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑝 ∈ 𝑆) |
20 | dochexmidlem1.p | . . . . . . . . . . 11 ⊢ ⊕ = (LSSum‘𝑈) | |
21 | 2, 20 | lsmcl 21099 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ LMod ∧ 𝑋 ∈ 𝑆 ∧ 𝑝 ∈ 𝑆) → (𝑋 ⊕ 𝑝) ∈ 𝑆) |
22 | 8, 10, 19, 21 | syl3anc 1370 | . . . . . . . . 9 ⊢ (𝜑 → (𝑋 ⊕ 𝑝) ∈ 𝑆) |
23 | 17, 22 | eqeltrid 2842 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 ∈ 𝑆) |
24 | 2 | lssincl 20980 | . . . . . . . 8 ⊢ ((𝑈 ∈ LMod ∧ ( ⊥ ‘𝑋) ∈ 𝑆 ∧ 𝑀 ∈ 𝑆) → (( ⊥ ‘𝑋) ∩ 𝑀) ∈ 𝑆) |
25 | 8, 16, 23, 24 | syl3anc 1370 | . . . . . . 7 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) ∈ 𝑆) |
26 | 25 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 }) → (( ⊥ ‘𝑋) ∩ 𝑀) ∈ 𝑆) |
27 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ (( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 }) → (( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 }) | |
28 | 2, 3, 4, 9, 26, 27 | lssatomic 38992 | . . . . 5 ⊢ ((𝜑 ∧ (( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 }) → ∃𝑞 ∈ 𝐴 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) |
29 | 28 | ex 412 | . . . 4 ⊢ (𝜑 → ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 } → ∃𝑞 ∈ 𝐴 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀))) |
30 | dochexmidlem1.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
31 | 7 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
32 | 10 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑋 ∈ 𝑆) |
33 | 18 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑝 ∈ 𝐴) |
34 | simp2 1136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑞 ∈ 𝐴) | |
35 | dochexmidlem5.xn | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ { 0 }) | |
36 | 35 | 3ad2ant1 1132 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑋 ≠ { 0 }) |
37 | simp3 1137 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) | |
38 | 5, 14, 6, 11, 2, 30, 20, 4, 31, 32, 33, 34, 3, 17, 36, 37 | dochexmidlem4 41445 | . . . . 5 ⊢ ((𝜑 ∧ 𝑞 ∈ 𝐴 ∧ 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀)) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋))) |
39 | 38 | rexlimdv3a 3156 | . . . 4 ⊢ (𝜑 → (∃𝑞 ∈ 𝐴 𝑞 ⊆ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
40 | 29, 39 | syld 47 | . . 3 ⊢ (𝜑 → ((( ⊥ ‘𝑋) ∩ 𝑀) ≠ { 0 } → 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)))) |
41 | 40 | necon1bd 2955 | . 2 ⊢ (𝜑 → (¬ 𝑝 ⊆ (𝑋 ⊕ ( ⊥ ‘𝑋)) → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 })) |
42 | 1, 41 | mpd 15 | 1 ⊢ (𝜑 → (( ⊥ ‘𝑋) ∩ 𝑀) = { 0 }) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∃wrex 3067 ∩ cin 3961 ⊆ wss 3962 {csn 4630 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 0gc0g 17485 LSSumclsm 19666 LModclmod 20874 LSubSpclss 20946 LSpanclspn 20986 LSAtomsclsa 38955 HLchlt 39331 LHypclh 39966 DVecHcdvh 41060 ocHcoch 41329 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-riotaBAD 38934 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-tpos 8249 df-undef 8296 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-0g 17487 df-mre 17630 df-mrc 17631 df-acs 17633 df-proset 18351 df-poset 18370 df-plt 18387 df-lub 18403 df-glb 18404 df-join 18405 df-meet 18406 df-p0 18482 df-p1 18483 df-lat 18489 df-clat 18556 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-subg 19153 df-cntz 19347 df-oppg 19376 df-lsm 19668 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-ring 20252 df-oppr 20350 df-dvdsr 20373 df-unit 20374 df-invr 20404 df-dvr 20417 df-drng 20747 df-lmod 20876 df-lss 20947 df-lsp 20987 df-lvec 21119 df-lsatoms 38957 df-lcv 39000 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-llines 39480 df-lplanes 39481 df-lvols 39482 df-lines 39483 df-psubsp 39485 df-pmap 39486 df-padd 39778 df-lhyp 39970 df-laut 39971 df-ldil 40086 df-ltrn 40087 df-trl 40141 df-tendo 40737 df-edring 40739 df-disoa 41011 df-dvech 41061 df-dib 41121 df-dic 41155 df-dih 41211 df-doch 41330 |
This theorem is referenced by: dochexmidlem6 41447 |
Copyright terms: Public domain | W3C validator |