![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eflt | Structured version Visualization version GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1546 | . 2 ⊢ ⊤ | |
2 | fveq2 6888 | . . 3 ⊢ (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦)) | |
3 | fveq2 6888 | . . 3 ⊢ (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴)) | |
4 | fveq2 6888 | . . 3 ⊢ (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵)) | |
5 | ssid 4003 | . . 3 ⊢ ℝ ⊆ ℝ | |
6 | reefcl 16026 | . . . 4 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ) | |
7 | 6 | adantl 483 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ) |
8 | simp2 1138 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) | |
9 | simp1 1137 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) | |
10 | 8, 9 | resubcld 11638 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
11 | posdif 11703 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) | |
12 | 11 | biimp3a 1470 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
13 | 10, 12 | elrpd 13009 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ+) |
14 | efgt1 16055 | . . . . . . . 8 ⊢ ((𝑦 − 𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦 − 𝑥))) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦 − 𝑥))) |
16 | 9 | reefcld 16027 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ) |
17 | 10 | reefcld 16027 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦 − 𝑥)) ∈ ℝ) |
18 | efgt0 16042 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 0 < (exp‘𝑥)) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥)) |
20 | ltmulgt11 12070 | . . . . . . . 8 ⊢ (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦 − 𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) | |
21 | 16, 17, 19, 20 | syl3anc 1372 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) |
22 | 15, 21 | mpbid 231 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
23 | 9 | recnd 11238 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ) |
24 | 10 | recnd 11238 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
25 | efadd 16033 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑦 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) | |
26 | 23, 24, 25 | syl2anc 585 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
27 | 8 | recnd 11238 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ) |
28 | 23, 27 | pncan3d 11570 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦 − 𝑥)) = 𝑦) |
29 | 28 | fveq2d 6892 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = (exp‘𝑦)) |
30 | 26, 29 | eqtr3d 2775 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))) = (exp‘𝑦)) |
31 | 22, 30 | breqtrd 5173 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦)) |
32 | 31 | 3expia 1122 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
33 | 32 | adantl 483 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
34 | 2, 3, 4, 5, 7, 33 | ltord1 11736 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
35 | 1, 34 | mpan 689 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ⊤wtru 1543 ∈ wcel 2107 class class class wbr 5147 ‘cfv 6540 (class class class)co 7404 ℂcc 11104 ℝcr 11105 0cc0 11106 1c1 11107 + caddc 11109 · cmul 11111 < clt 11244 − cmin 11440 ℝ+crp 12970 expce 16001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7720 ax-inf2 9632 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7851 df-1st 7970 df-2nd 7971 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-ico 13326 df-fz 13481 df-fzo 13624 df-fl 13753 df-seq 13963 df-exp 14024 df-fac 14230 df-bc 14259 df-hash 14287 df-shft 15010 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-limsup 15411 df-clim 15428 df-rlim 15429 df-sum 15629 df-ef 16007 |
This theorem is referenced by: efle 16057 reefiso 25942 logdivlti 26110 divlogrlim 26125 cxplt 26184 birthday 26439 cxploglim 26462 bposlem6 26772 bposlem9 26775 pntpbnd1a 27068 pntibndlem2 27074 pntlemb 27080 ostth2lem3 27118 ostth2 27120 |
Copyright terms: Public domain | W3C validator |