MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eflt Structured version   Visualization version   GIF version

Theorem eflt 15706
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.)
Assertion
Ref Expression
eflt ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))

Proof of Theorem eflt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tru 1547 . 2
2 fveq2 6736 . . 3 (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦))
3 fveq2 6736 . . 3 (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴))
4 fveq2 6736 . . 3 (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵))
5 ssid 3938 . . 3 ℝ ⊆ ℝ
6 reefcl 15676 . . . 4 (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ)
76adantl 485 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ)
8 simp2 1139 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ)
9 simp1 1138 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ)
108, 9resubcld 11285 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ)
11 posdif 11350 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦𝑥)))
1211biimp3a 1471 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦𝑥))
1310, 12elrpd 12650 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℝ+)
14 efgt1 15705 . . . . . . . 8 ((𝑦𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦𝑥)))
1513, 14syl 17 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦𝑥)))
169reefcld 15677 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ)
1710reefcld 15677 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦𝑥)) ∈ ℝ)
18 efgt0 15692 . . . . . . . . 9 (𝑥 ∈ ℝ → 0 < (exp‘𝑥))
199, 18syl 17 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥))
20 ltmulgt11 11717 . . . . . . . 8 (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2116, 17, 19, 20syl3anc 1373 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥)))))
2215, 21mpbid 235 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦𝑥))))
239recnd 10886 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ)
2410recnd 10886 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦𝑥) ∈ ℂ)
25 efadd 15683 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ (𝑦𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
2623, 24, 25syl2anc 587 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = ((exp‘𝑥) · (exp‘(𝑦𝑥))))
278recnd 10886 . . . . . . . . 9 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ)
2823, 27pncan3d 11217 . . . . . . . 8 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦𝑥)) = 𝑦)
2928fveq2d 6740 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦𝑥))) = (exp‘𝑦))
3026, 29eqtr3d 2780 . . . . . 6 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦𝑥))) = (exp‘𝑦))
3122, 30breqtrd 5094 . . . . 5 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦))
32313expia 1123 . . . 4 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
3332adantl 485 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦)))
342, 3, 4, 5, 7, 33ltord1 11383 . 2 ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
351, 34mpan 690 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wtru 1544  wcel 2111   class class class wbr 5068  cfv 6398  (class class class)co 7232  cc 10752  cr 10753  0cc0 10754  1c1 10755   + caddc 10757   · cmul 10759   < clt 10892  cmin 11087  +crp 12611  expce 15651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5194  ax-sep 5207  ax-nul 5214  ax-pow 5273  ax-pr 5337  ax-un 7542  ax-inf2 9281  ax-cnex 10810  ax-resscn 10811  ax-1cn 10812  ax-icn 10813  ax-addcl 10814  ax-addrcl 10815  ax-mulcl 10816  ax-mulrcl 10817  ax-mulcom 10818  ax-addass 10819  ax-mulass 10820  ax-distr 10821  ax-i2m1 10822  ax-1ne0 10823  ax-1rid 10824  ax-rnegex 10825  ax-rrecex 10826  ax-cnre 10827  ax-pre-lttri 10828  ax-pre-lttrn 10829  ax-pre-ltadd 10830  ax-pre-mulgt0 10831  ax-pre-sup 10832
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3423  df-sbc 3710  df-csb 3827  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4253  df-if 4455  df-pw 4530  df-sn 4557  df-pr 4559  df-tp 4561  df-op 4563  df-uni 4835  df-int 4875  df-iun 4921  df-br 5069  df-opab 5131  df-mpt 5151  df-tr 5177  df-id 5470  df-eprel 5475  df-po 5483  df-so 5484  df-fr 5524  df-se 5525  df-we 5526  df-xp 5572  df-rel 5573  df-cnv 5574  df-co 5575  df-dm 5576  df-rn 5577  df-res 5578  df-ima 5579  df-pred 6176  df-ord 6234  df-on 6235  df-lim 6236  df-suc 6237  df-iota 6356  df-fun 6400  df-fn 6401  df-f 6402  df-f1 6403  df-fo 6404  df-f1o 6405  df-fv 6406  df-isom 6407  df-riota 7189  df-ov 7235  df-oprab 7236  df-mpo 7237  df-om 7664  df-1st 7780  df-2nd 7781  df-wrecs 8068  df-recs 8129  df-rdg 8167  df-1o 8223  df-er 8412  df-pm 8532  df-en 8648  df-dom 8649  df-sdom 8650  df-fin 8651  df-sup 9083  df-inf 9084  df-oi 9151  df-card 9580  df-pnf 10894  df-mnf 10895  df-xr 10896  df-ltxr 10897  df-le 10898  df-sub 11089  df-neg 11090  df-div 11515  df-nn 11856  df-2 11918  df-3 11919  df-n0 12116  df-z 12202  df-uz 12464  df-rp 12612  df-ico 12966  df-fz 13121  df-fzo 13264  df-fl 13392  df-seq 13602  df-exp 13663  df-fac 13868  df-bc 13897  df-hash 13925  df-shft 14658  df-cj 14690  df-re 14691  df-im 14692  df-sqrt 14826  df-abs 14827  df-limsup 15060  df-clim 15077  df-rlim 15078  df-sum 15278  df-ef 15657
This theorem is referenced by:  efle  15707  reefiso  25367  logdivlti  25535  divlogrlim  25550  cxplt  25609  birthday  25864  cxploglim  25887  bposlem6  26197  bposlem9  26200  pntpbnd1a  26493  pntibndlem2  26499  pntlemb  26505  ostth2lem3  26543  ostth2  26545
  Copyright terms: Public domain W3C validator