Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eflt | Structured version Visualization version GIF version |
Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
Ref | Expression |
---|---|
eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tru 1543 | . 2 ⊢ ⊤ | |
2 | fveq2 6774 | . . 3 ⊢ (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦)) | |
3 | fveq2 6774 | . . 3 ⊢ (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴)) | |
4 | fveq2 6774 | . . 3 ⊢ (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵)) | |
5 | ssid 3943 | . . 3 ⊢ ℝ ⊆ ℝ | |
6 | reefcl 15796 | . . . 4 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ) | |
7 | 6 | adantl 482 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ) |
8 | simp2 1136 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) | |
9 | simp1 1135 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) | |
10 | 8, 9 | resubcld 11403 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
11 | posdif 11468 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) | |
12 | 11 | biimp3a 1468 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
13 | 10, 12 | elrpd 12769 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ+) |
14 | efgt1 15825 | . . . . . . . 8 ⊢ ((𝑦 − 𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦 − 𝑥))) | |
15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦 − 𝑥))) |
16 | 9 | reefcld 15797 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ) |
17 | 10 | reefcld 15797 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦 − 𝑥)) ∈ ℝ) |
18 | efgt0 15812 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 0 < (exp‘𝑥)) | |
19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥)) |
20 | ltmulgt11 11835 | . . . . . . . 8 ⊢ (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦 − 𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) | |
21 | 16, 17, 19, 20 | syl3anc 1370 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) |
22 | 15, 21 | mpbid 231 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
23 | 9 | recnd 11003 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ) |
24 | 10 | recnd 11003 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
25 | efadd 15803 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑦 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) | |
26 | 23, 24, 25 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
27 | 8 | recnd 11003 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ) |
28 | 23, 27 | pncan3d 11335 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦 − 𝑥)) = 𝑦) |
29 | 28 | fveq2d 6778 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = (exp‘𝑦)) |
30 | 26, 29 | eqtr3d 2780 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))) = (exp‘𝑦)) |
31 | 22, 30 | breqtrd 5100 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦)) |
32 | 31 | 3expia 1120 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
33 | 32 | adantl 482 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
34 | 2, 3, 4, 5, 7, 33 | ltord1 11501 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
35 | 1, 34 | mpan 687 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ⊤wtru 1540 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 − cmin 11205 ℝ+crp 12730 expce 15771 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-ico 13085 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-fac 13988 df-bc 14017 df-hash 14045 df-shft 14778 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-limsup 15180 df-clim 15197 df-rlim 15198 df-sum 15398 df-ef 15777 |
This theorem is referenced by: efle 15827 reefiso 25607 logdivlti 25775 divlogrlim 25790 cxplt 25849 birthday 26104 cxploglim 26127 bposlem6 26437 bposlem9 26440 pntpbnd1a 26733 pntibndlem2 26739 pntlemb 26745 ostth2lem3 26783 ostth2 26785 |
Copyright terms: Public domain | W3C validator |