| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eflt | Structured version Visualization version GIF version | ||
| Description: The exponential function on the reals is strictly increasing. (Contributed by Paul Chapman, 21-Aug-2007.) (Revised by Mario Carneiro, 17-Jul-2014.) |
| Ref | Expression |
|---|---|
| eflt | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tru 1545 | . 2 ⊢ ⊤ | |
| 2 | fveq2 6831 | . . 3 ⊢ (𝑥 = 𝑦 → (exp‘𝑥) = (exp‘𝑦)) | |
| 3 | fveq2 6831 | . . 3 ⊢ (𝑥 = 𝐴 → (exp‘𝑥) = (exp‘𝐴)) | |
| 4 | fveq2 6831 | . . 3 ⊢ (𝑥 = 𝐵 → (exp‘𝑥) = (exp‘𝐵)) | |
| 5 | ssid 3953 | . . 3 ⊢ ℝ ⊆ ℝ | |
| 6 | reefcl 16001 | . . . 4 ⊢ (𝑥 ∈ ℝ → (exp‘𝑥) ∈ ℝ) | |
| 7 | 6 | adantl 481 | . . 3 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (exp‘𝑥) ∈ ℝ) |
| 8 | simp2 1137 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) | |
| 9 | simp1 1136 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) | |
| 10 | 8, 9 | resubcld 11556 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
| 11 | posdif 11621 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) | |
| 12 | 11 | biimp3a 1471 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
| 13 | 10, 12 | elrpd 12937 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ+) |
| 14 | efgt1 16032 | . . . . . . . 8 ⊢ ((𝑦 − 𝑥) ∈ ℝ+ → 1 < (exp‘(𝑦 − 𝑥))) | |
| 15 | 13, 14 | syl 17 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 1 < (exp‘(𝑦 − 𝑥))) |
| 16 | 9 | reefcld 16002 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) ∈ ℝ) |
| 17 | 10 | reefcld 16002 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑦 − 𝑥)) ∈ ℝ) |
| 18 | efgt0 16019 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℝ → 0 < (exp‘𝑥)) | |
| 19 | 9, 18 | syl 17 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 0 < (exp‘𝑥)) |
| 20 | ltmulgt11 11992 | . . . . . . . 8 ⊢ (((exp‘𝑥) ∈ ℝ ∧ (exp‘(𝑦 − 𝑥)) ∈ ℝ ∧ 0 < (exp‘𝑥)) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) | |
| 21 | 16, 17, 19, 20 | syl3anc 1373 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (1 < (exp‘(𝑦 − 𝑥)) ↔ (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))))) |
| 22 | 15, 21 | mpbid 232 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
| 23 | 9 | recnd 11151 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℂ) |
| 24 | 10 | recnd 11151 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
| 25 | efadd 16008 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℂ ∧ (𝑦 − 𝑥) ∈ ℂ) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) | |
| 26 | 23, 24, 25 | syl2anc 584 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = ((exp‘𝑥) · (exp‘(𝑦 − 𝑥)))) |
| 27 | 8 | recnd 11151 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℂ) |
| 28 | 23, 27 | pncan3d 11486 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (𝑥 + (𝑦 − 𝑥)) = 𝑦) |
| 29 | 28 | fveq2d 6835 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘(𝑥 + (𝑦 − 𝑥))) = (exp‘𝑦)) |
| 30 | 26, 29 | eqtr3d 2770 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → ((exp‘𝑥) · (exp‘(𝑦 − 𝑥))) = (exp‘𝑦)) |
| 31 | 22, 30 | breqtrd 5121 | . . . . 5 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑥 < 𝑦) → (exp‘𝑥) < (exp‘𝑦)) |
| 32 | 31 | 3expia 1121 | . . . 4 ⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
| 33 | 32 | adantl 481 | . . 3 ⊢ ((⊤ ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 < 𝑦 → (exp‘𝑥) < (exp‘𝑦))) |
| 34 | 2, 3, 4, 5, 7, 33 | ltord1 11654 | . 2 ⊢ ((⊤ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| 35 | 1, 34 | mpan 690 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 ↔ (exp‘𝐴) < (exp‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 class class class wbr 5095 ‘cfv 6489 (class class class)co 7355 ℂcc 11015 ℝcr 11016 0cc0 11017 1c1 11018 + caddc 11020 · cmul 11022 < clt 11157 − cmin 11355 ℝ+crp 12896 expce 15975 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-inf2 9542 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 ax-pre-sup 11095 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-er 8631 df-pm 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9337 df-inf 9338 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-div 11786 df-nn 12137 df-2 12199 df-3 12200 df-n0 12393 df-z 12480 df-uz 12743 df-rp 12897 df-ico 13258 df-fz 13415 df-fzo 13562 df-fl 13703 df-seq 13916 df-exp 13976 df-fac 14188 df-bc 14217 df-hash 14245 df-shft 14981 df-cj 15013 df-re 15014 df-im 15015 df-sqrt 15149 df-abs 15150 df-limsup 15385 df-clim 15402 df-rlim 15403 df-sum 15601 df-ef 15981 |
| This theorem is referenced by: efle 16034 reefiso 26405 logdivlti 26576 divlogrlim 26591 cxplt 26650 birthday 26911 cxploglim 26935 bposlem6 27247 bposlem9 27250 pntpbnd1a 27543 pntibndlem2 27549 pntlemb 27555 ostth2lem3 27593 ostth2 27595 |
| Copyright terms: Public domain | W3C validator |