MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirhl Structured version   Visualization version   GIF version

Theorem mirhl 26473
Description: If two points 𝑋 and 𝑌 are on the same half-line from 𝑍, the same applies to the mirror points. (Contributed by Thierry Arnoux, 21-Feb-2020.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirhl.m 𝑀 = (𝑆𝐴)
mirhl.k 𝐾 = (hlG‘𝐺)
mirhl.a (𝜑𝐴𝑃)
mirhl.x (𝜑𝑋𝑃)
mirhl.y (𝜑𝑌𝑃)
mirhl.z (𝜑𝑍𝑃)
mirhl.1 (𝜑𝑋(𝐾𝑍)𝑌)
Assertion
Ref Expression
mirhl (𝜑 → (𝑀𝑋)(𝐾‘(𝑀𝑍))(𝑀𝑌))

Proof of Theorem mirhl
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . . 6 (𝜑𝐺 ∈ TarskiG)
76adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝐺 ∈ TarskiG)
8 mirhl.a . . . . . 6 (𝜑𝐴𝑃)
98adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝐴𝑃)
10 mirhl.m . . . . 5 𝑀 = (𝑆𝐴)
11 mirhl.x . . . . . 6 (𝜑𝑋𝑃)
1211adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝑋𝑃)
13 mirhl.z . . . . . 6 (𝜑𝑍𝑃)
1413adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝑍𝑃)
15 simpr 488 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → (𝑀𝑋) = (𝑀𝑍))
161, 2, 3, 4, 5, 7, 9, 10, 12, 14, 15mireq 26459 . . . 4 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝑋 = 𝑍)
17 mirhl.1 . . . . . . . 8 (𝜑𝑋(𝐾𝑍)𝑌)
18 mirhl.k . . . . . . . . 9 𝐾 = (hlG‘𝐺)
19 mirhl.y . . . . . . . . 9 (𝜑𝑌𝑃)
201, 3, 18, 11, 19, 13, 6ishlg 26396 . . . . . . . 8 (𝜑 → (𝑋(𝐾𝑍)𝑌 ↔ (𝑋𝑍𝑌𝑍 ∧ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))))
2117, 20mpbid 235 . . . . . . 7 (𝜑 → (𝑋𝑍𝑌𝑍 ∧ (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋))))
2221simp1d 1139 . . . . . 6 (𝜑𝑋𝑍)
2322adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → 𝑋𝑍)
2423neneqd 2992 . . . 4 ((𝜑 ∧ (𝑀𝑋) = (𝑀𝑍)) → ¬ 𝑋 = 𝑍)
2516, 24pm2.65da 816 . . 3 (𝜑 → ¬ (𝑀𝑋) = (𝑀𝑍))
2625neqned 2994 . 2 (𝜑 → (𝑀𝑋) ≠ (𝑀𝑍))
276adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝐺 ∈ TarskiG)
288adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝐴𝑃)
2919adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝑌𝑃)
3013adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝑍𝑃)
31 simpr 488 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → (𝑀𝑌) = (𝑀𝑍))
321, 2, 3, 4, 5, 27, 28, 10, 29, 30, 31mireq 26459 . . . 4 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝑌 = 𝑍)
3321simp2d 1140 . . . . . 6 (𝜑𝑌𝑍)
3433adantr 484 . . . . 5 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → 𝑌𝑍)
3534neneqd 2992 . . . 4 ((𝜑 ∧ (𝑀𝑌) = (𝑀𝑍)) → ¬ 𝑌 = 𝑍)
3632, 35pm2.65da 816 . . 3 (𝜑 → ¬ (𝑀𝑌) = (𝑀𝑍))
3736neqned 2994 . 2 (𝜑 → (𝑀𝑌) ≠ (𝑀𝑍))
3821simp3d 1141 . . 3 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)))
396adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝐺 ∈ TarskiG)
408adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝐴𝑃)
4113adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝑍𝑃)
4211adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋𝑃)
4319adantr 484 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝑌𝑃)
44 simpr 488 . . . . . 6 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → 𝑋 ∈ (𝑍𝐼𝑌))
451, 2, 3, 4, 5, 39, 40, 10, 41, 42, 43, 44mirbtwni 26465 . . . . 5 ((𝜑𝑋 ∈ (𝑍𝐼𝑌)) → (𝑀𝑋) ∈ ((𝑀𝑍)𝐼(𝑀𝑌)))
4645ex 416 . . . 4 (𝜑 → (𝑋 ∈ (𝑍𝐼𝑌) → (𝑀𝑋) ∈ ((𝑀𝑍)𝐼(𝑀𝑌))))
476adantr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝐺 ∈ TarskiG)
488adantr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝐴𝑃)
4913adantr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝑍𝑃)
5019adantr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝑌𝑃)
5111adantr 484 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝑋𝑃)
52 simpr 488 . . . . . 6 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → 𝑌 ∈ (𝑍𝐼𝑋))
531, 2, 3, 4, 5, 47, 48, 10, 49, 50, 51, 52mirbtwni 26465 . . . . 5 ((𝜑𝑌 ∈ (𝑍𝐼𝑋)) → (𝑀𝑌) ∈ ((𝑀𝑍)𝐼(𝑀𝑋)))
5453ex 416 . . . 4 (𝜑 → (𝑌 ∈ (𝑍𝐼𝑋) → (𝑀𝑌) ∈ ((𝑀𝑍)𝐼(𝑀𝑋))))
5546, 54orim12d 962 . . 3 (𝜑 → ((𝑋 ∈ (𝑍𝐼𝑌) ∨ 𝑌 ∈ (𝑍𝐼𝑋)) → ((𝑀𝑋) ∈ ((𝑀𝑍)𝐼(𝑀𝑌)) ∨ (𝑀𝑌) ∈ ((𝑀𝑍)𝐼(𝑀𝑋)))))
5638, 55mpd 15 . 2 (𝜑 → ((𝑀𝑋) ∈ ((𝑀𝑍)𝐼(𝑀𝑌)) ∨ (𝑀𝑌) ∈ ((𝑀𝑍)𝐼(𝑀𝑋))))
571, 2, 3, 4, 5, 6, 8, 10, 11mircl 26455 . . 3 (𝜑 → (𝑀𝑋) ∈ 𝑃)
581, 2, 3, 4, 5, 6, 8, 10, 19mircl 26455 . . 3 (𝜑 → (𝑀𝑌) ∈ 𝑃)
591, 2, 3, 4, 5, 6, 8, 10, 13mircl 26455 . . 3 (𝜑 → (𝑀𝑍) ∈ 𝑃)
601, 3, 18, 57, 58, 59, 6ishlg 26396 . 2 (𝜑 → ((𝑀𝑋)(𝐾‘(𝑀𝑍))(𝑀𝑌) ↔ ((𝑀𝑋) ≠ (𝑀𝑍) ∧ (𝑀𝑌) ≠ (𝑀𝑍) ∧ ((𝑀𝑋) ∈ ((𝑀𝑍)𝐼(𝑀𝑌)) ∨ (𝑀𝑌) ∈ ((𝑀𝑍)𝐼(𝑀𝑋))))))
6126, 37, 56, 60mpbir3and 1339 1 (𝜑 → (𝑀𝑋)(𝐾‘(𝑀𝑍))(𝑀𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  hlGchlg 26394  pInvGcmir 26446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-hlg 26395  df-mir 26447
This theorem is referenced by:  opphllem3  26543
  Copyright terms: Public domain W3C validator