HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthmo Structured version   Visualization version   GIF version

Theorem pjhthmo 31238
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhthmo ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem pjhthmo
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 656 . . . 4 (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) ↔ ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
2 reeanv 3210 . . . . . 6 (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) ↔ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
3 simpll1 1213 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐴S )
4 simpll2 1214 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐵S )
5 simpll3 1215 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝐴𝐵) = 0)
6 simplrl 776 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥𝐴)
7 simprll 778 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑦𝐵)
8 simplrr 777 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑧𝐴)
9 simprlr 779 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑤𝐵)
10 simprrl 780 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑥 + 𝑦))
11 simprrr 781 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑧 + 𝑤))
1210, 11eqtr3d 2767 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
133, 4, 5, 6, 7, 8, 9, 12shuni 31236 . . . . . . . . 9 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 = 𝑧𝑦 = 𝑤))
1413simpld 494 . . . . . . . 8 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥 = 𝑧)
1514exp32 420 . . . . . . 7 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((𝑦𝐵𝑤𝐵) → ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
1615rexlimdvv 3194 . . . . . 6 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
172, 16biimtrrid 243 . . . . 5 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
1817expimpd 453 . . . 4 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
191, 18biimtrrid 243 . . 3 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
2019alrimivv 1928 . 2 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
21 eleq1w 2812 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
22 oveq1 7397 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 + 𝑦) = (𝑧 + 𝑦))
2322eqeq2d 2741 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = (𝑥 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑦)))
2423rexbidv 3158 . . . . 5 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑦𝐵 𝐶 = (𝑧 + 𝑦)))
25 oveq2 7398 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 + 𝑦) = (𝑧 + 𝑤))
2625eqeq2d 2741 . . . . . 6 (𝑦 = 𝑤 → (𝐶 = (𝑧 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑤)))
2726cbvrexvw 3217 . . . . 5 (∃𝑦𝐵 𝐶 = (𝑧 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))
2824, 27bitrdi 287 . . . 4 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
2921, 28anbi12d 632 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
3029mo4 2560 . 2 (∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
3120, 30sylibr 234 1 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  ∃*wmo 2532  wrex 3054  cin 3916  (class class class)co 7390   + cva 30856   S csh 30864  0c0h 30871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-hilex 30935  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-hvsub 30907  df-sh 31143  df-ch0 31189
This theorem is referenced by:  pjhtheu  31330  pjpreeq  31334
  Copyright terms: Public domain W3C validator