| Step | Hyp | Ref
| Expression |
| 1 | | an4 656 |
. . . 4
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) ↔ ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤)))) |
| 2 | | reeanv 3213 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 ∃𝑤 ∈ 𝐵 (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)) ↔ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) |
| 3 | | simpll1 1213 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝐴 ∈ Sℋ
) |
| 4 | | simpll2 1214 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝐵 ∈ Sℋ
) |
| 5 | | simpll3 1215 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → (𝐴 ∩ 𝐵) = 0ℋ) |
| 6 | | simplrl 776 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝑥 ∈ 𝐴) |
| 7 | | simprll 778 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝑦 ∈ 𝐵) |
| 8 | | simplrr 777 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝑧 ∈ 𝐴) |
| 9 | | simprlr 779 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝑤 ∈ 𝐵) |
| 10 | | simprrl 780 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝐶 = (𝑥 +ℎ 𝑦)) |
| 11 | | simprrr 781 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝐶 = (𝑧 +ℎ 𝑤)) |
| 12 | 10, 11 | eqtr3d 2772 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) |
| 13 | 3, 4, 5, 6, 7, 8, 9, 12 | shuni 31281 |
. . . . . . . . 9
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → (𝑥 = 𝑧 ∧ 𝑦 = 𝑤)) |
| 14 | 13 | simpld 494 |
. . . . . . . 8
⊢ ((((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) ∧ ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) ∧ (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)))) → 𝑥 = 𝑧) |
| 15 | 14 | exp32 420 |
. . . . . . 7
⊢ (((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵) → ((𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)) → 𝑥 = 𝑧))) |
| 16 | 15 | rexlimdvv 3197 |
. . . . . 6
⊢ (((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (∃𝑦 ∈ 𝐵 ∃𝑤 ∈ 𝐵 (𝐶 = (𝑥 +ℎ 𝑦) ∧ 𝐶 = (𝑧 +ℎ 𝑤)) → 𝑥 = 𝑧)) |
| 17 | 2, 16 | biimtrrid 243 |
. . . . 5
⊢ (((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) ∧
(𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤)) → 𝑥 = 𝑧)) |
| 18 | 17 | expimpd 453 |
. . . 4
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) →
(((𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) ∧ (∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) → 𝑥 = 𝑧)) |
| 19 | 1, 18 | biimtrrid 243 |
. . 3
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) →
(((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) → 𝑥 = 𝑧)) |
| 20 | 19 | alrimivv 1928 |
. 2
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) →
∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) → 𝑥 = 𝑧)) |
| 21 | | eleq1w 2817 |
. . . 4
⊢ (𝑥 = 𝑧 → (𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴)) |
| 22 | | oveq1 7412 |
. . . . . . 7
⊢ (𝑥 = 𝑧 → (𝑥 +ℎ 𝑦) = (𝑧 +ℎ 𝑦)) |
| 23 | 22 | eqeq2d 2746 |
. . . . . 6
⊢ (𝑥 = 𝑧 → (𝐶 = (𝑥 +ℎ 𝑦) ↔ 𝐶 = (𝑧 +ℎ 𝑦))) |
| 24 | 23 | rexbidv 3164 |
. . . . 5
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ↔ ∃𝑦 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑦))) |
| 25 | | oveq2 7413 |
. . . . . . 7
⊢ (𝑦 = 𝑤 → (𝑧 +ℎ 𝑦) = (𝑧 +ℎ 𝑤)) |
| 26 | 25 | eqeq2d 2746 |
. . . . . 6
⊢ (𝑦 = 𝑤 → (𝐶 = (𝑧 +ℎ 𝑦) ↔ 𝐶 = (𝑧 +ℎ 𝑤))) |
| 27 | 26 | cbvrexvw 3221 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 𝐶 = (𝑧 +ℎ 𝑦) ↔ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤)) |
| 28 | 24, 27 | bitrdi 287 |
. . . 4
⊢ (𝑥 = 𝑧 → (∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦) ↔ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) |
| 29 | 21, 28 | anbi12d 632 |
. . 3
⊢ (𝑥 = 𝑧 → ((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ↔ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤)))) |
| 30 | 29 | mo4 2565 |
. 2
⊢
(∃*𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ↔ ∀𝑥∀𝑧(((𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦)) ∧ (𝑧 ∈ 𝐴 ∧ ∃𝑤 ∈ 𝐵 𝐶 = (𝑧 +ℎ 𝑤))) → 𝑥 = 𝑧)) |
| 31 | 20, 30 | sylibr 234 |
1
⊢ ((𝐴 ∈
Sℋ ∧ 𝐵 ∈ Sℋ
∧ (𝐴 ∩ 𝐵) = 0ℋ) →
∃*𝑥(𝑥 ∈ 𝐴 ∧ ∃𝑦 ∈ 𝐵 𝐶 = (𝑥 +ℎ 𝑦))) |