HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  pjhthmo Structured version   Visualization version   GIF version

Theorem pjhthmo 30089
Description: Projection Theorem, uniqueness part. Any two disjoint subspaces yield a unique decomposition of vectors into each subspace. (Contributed by Mario Carneiro, 15-May-2014.) (New usage is discouraged.)
Assertion
Ref Expression
pjhthmo ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem pjhthmo
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 an4 654 . . . 4 (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) ↔ ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
2 reeanv 3215 . . . . . 6 (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) ↔ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
3 simpll1 1212 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐴S )
4 simpll2 1213 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐵S )
5 simpll3 1214 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝐴𝐵) = 0)
6 simplrl 775 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥𝐴)
7 simprll 777 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑦𝐵)
8 simplrr 776 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑧𝐴)
9 simprlr 778 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑤𝐵)
10 simprrl 779 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑥 + 𝑦))
11 simprrr 780 . . . . . . . . . . 11 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝐶 = (𝑧 + 𝑤))
1210, 11eqtr3d 2778 . . . . . . . . . 10 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 + 𝑦) = (𝑧 + 𝑤))
133, 4, 5, 6, 7, 8, 9, 12shuni 30087 . . . . . . . . 9 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → (𝑥 = 𝑧𝑦 = 𝑤))
1413simpld 495 . . . . . . . 8 ((((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) ∧ ((𝑦𝐵𝑤𝐵) ∧ (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)))) → 𝑥 = 𝑧)
1514exp32 421 . . . . . . 7 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((𝑦𝐵𝑤𝐵) → ((𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧)))
1615rexlimdvv 3202 . . . . . 6 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → (∃𝑦𝐵𝑤𝐵 (𝐶 = (𝑥 + 𝑦) ∧ 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
172, 16biimtrrid 242 . . . . 5 (((𝐴S𝐵S ∧ (𝐴𝐵) = 0) ∧ (𝑥𝐴𝑧𝐴)) → ((∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)) → 𝑥 = 𝑧))
1817expimpd 454 . . . 4 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴𝑧𝐴) ∧ (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
191, 18biimtrrid 242 . . 3 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → (((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
2019alrimivv 1931 . 2 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
21 eleq1w 2820 . . . 4 (𝑥 = 𝑧 → (𝑥𝐴𝑧𝐴))
22 oveq1 7358 . . . . . . 7 (𝑥 = 𝑧 → (𝑥 + 𝑦) = (𝑧 + 𝑦))
2322eqeq2d 2747 . . . . . 6 (𝑥 = 𝑧 → (𝐶 = (𝑥 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑦)))
2423rexbidv 3173 . . . . 5 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑦𝐵 𝐶 = (𝑧 + 𝑦)))
25 oveq2 7359 . . . . . . 7 (𝑦 = 𝑤 → (𝑧 + 𝑦) = (𝑧 + 𝑤))
2625eqeq2d 2747 . . . . . 6 (𝑦 = 𝑤 → (𝐶 = (𝑧 + 𝑦) ↔ 𝐶 = (𝑧 + 𝑤)))
2726cbvrexvw 3224 . . . . 5 (∃𝑦𝐵 𝐶 = (𝑧 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))
2824, 27bitrdi 286 . . . 4 (𝑥 = 𝑧 → (∃𝑦𝐵 𝐶 = (𝑥 + 𝑦) ↔ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤)))
2921, 28anbi12d 631 . . 3 (𝑥 = 𝑧 → ((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))))
3029mo4 2564 . 2 (∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ↔ ∀𝑥𝑧(((𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)) ∧ (𝑧𝐴 ∧ ∃𝑤𝐵 𝐶 = (𝑧 + 𝑤))) → 𝑥 = 𝑧))
3120, 30sylibr 233 1 ((𝐴S𝐵S ∧ (𝐴𝐵) = 0) → ∃*𝑥(𝑥𝐴 ∧ ∃𝑦𝐵 𝐶 = (𝑥 + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087  wal 1539   = wceq 1541  wcel 2106  ∃*wmo 2536  wrex 3071  cin 3907  (class class class)co 7351   + cva 29707   S csh 29715  0c0h 29722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7664  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-hilex 29786  ax-hfvadd 29787  ax-hvcom 29788  ax-hvass 29789  ax-hv0cl 29790  ax-hvaddid 29791  ax-hfvmul 29792  ax-hvmulid 29793  ax-hvmulass 29794  ax-hvdistr1 29795  ax-hvdistr2 29796  ax-hvmul0 29797
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-id 5529  df-po 5543  df-so 5544  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-riota 7307  df-ov 7354  df-oprab 7355  df-mpo 7356  df-er 8606  df-en 8842  df-dom 8843  df-sdom 8844  df-pnf 11149  df-mnf 11150  df-xr 11151  df-ltxr 11152  df-le 11153  df-sub 11345  df-neg 11346  df-div 11771  df-hvsub 29758  df-sh 29994  df-ch0 30040
This theorem is referenced by:  pjhtheu  30181  pjpreeq  30185
  Copyright terms: Public domain W3C validator