MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlkwwlksb Structured version   Visualization version   GIF version

Theorem clwwlkwwlksb 29983
Description: A nonempty word over vertices represents a closed walk iff the word concatenated with its first symbol represents a walk. (Contributed by AV, 4-Mar-2022.)
Hypothesis
Ref Expression
clwwlkwwlksb.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlkwwlksb ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺)))

Proof of Theorem clwwlkwwlksb
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 fstwrdne 14520 . . . . . . . . . 10 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊‘0) ∈ 𝑉)
21s1cld 14568 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉)
3 ccatlen 14540 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + (♯‘⟨“(𝑊‘0)”⟩)))
42, 3syldan 591 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + (♯‘⟨“(𝑊‘0)”⟩)))
5 s1len 14571 . . . . . . . . 9 (♯‘⟨“(𝑊‘0)”⟩) = 1
65oveq2i 7398 . . . . . . . 8 ((♯‘𝑊) + (♯‘⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + 1)
74, 6eqtrdi 2780 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) = ((♯‘𝑊) + 1))
87oveq1d 7402 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1) = (((♯‘𝑊) + 1) − 1))
9 lencl 14498 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
109nn0cnd 12505 . . . . . . . 8 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℂ)
1110adantr 480 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℂ)
12 1cnd 11169 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → 1 ∈ ℂ)
1311, 12, 12addsubd 11554 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (((♯‘𝑊) + 1) − 1) = (((♯‘𝑊) − 1) + 1))
148, 13eqtrd 2764 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1) = (((♯‘𝑊) − 1) + 1))
1514oveq2d 7403 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)) = (0..^(((♯‘𝑊) − 1) + 1)))
1615raleqdv 3299 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^(((♯‘𝑊) − 1) + 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
17 lennncl 14499 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
18 nnm1nn0 12483 . . . . . . . 8 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ ℕ0)
1917, 18syl 17 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ ℕ0)
20 elnn0uz 12838 . . . . . . 7 (((♯‘𝑊) − 1) ∈ ℕ0 ↔ ((♯‘𝑊) − 1) ∈ (ℤ‘0))
2119, 20sylib 218 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (ℤ‘0))
22 fzosplitsn 13736 . . . . . 6 (((♯‘𝑊) − 1) ∈ (ℤ‘0) → (0..^(((♯‘𝑊) − 1) + 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
2321, 22syl 17 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (0..^(((♯‘𝑊) − 1) + 1)) = ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}))
2423raleqdv 3299 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^(((♯‘𝑊) − 1) + 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
25 ralunb 4160 . . . 4 (∀𝑖 ∈ ((0..^((♯‘𝑊) − 1)) ∪ {((♯‘𝑊) − 1)}){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝑊) − 1)} {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
2624, 25bitrdi 287 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^(((♯‘𝑊) − 1) + 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝑊) − 1)} {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
27 simpl 482 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → 𝑊 ∈ Word 𝑉)
289nn0zd 12555 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℤ)
2928adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℤ)
30 elfzom1elfzo 13694 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 ∈ (0..^(♯‘𝑊)))
3129, 30sylan 580 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → 𝑖 ∈ (0..^(♯‘𝑊)))
32 ccats1val1 14591 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑖 ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖) = (𝑊𝑖))
3327, 31, 32syl2an2r 685 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖) = (𝑊𝑖))
34 elfzom1elp1fzo 13693 . . . . . . . . 9 (((♯‘𝑊) ∈ ℤ ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑊)))
3529, 34sylan 580 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → (𝑖 + 1) ∈ (0..^(♯‘𝑊)))
36 ccats1val1 14591 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (𝑖 + 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
3727, 35, 36syl2an2r 685 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1)) = (𝑊‘(𝑖 + 1)))
3833, 37preq12d 4705 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} = {(𝑊𝑖), (𝑊‘(𝑖 + 1))})
3938eleq1d 2813 . . . . 5 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ 𝑖 ∈ (0..^((♯‘𝑊) − 1))) → ({((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
4039ralbidva 3154 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
41 ovex 7420 . . . . . 6 ((♯‘𝑊) − 1) ∈ V
42 fveq2 6858 . . . . . . . 8 (𝑖 = ((♯‘𝑊) − 1) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖) = ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)))
43 fvoveq1 7410 . . . . . . . 8 (𝑖 = ((♯‘𝑊) − 1) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1)) = ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1)))
4442, 43preq12d 4705 . . . . . . 7 (𝑖 = ((♯‘𝑊) − 1) → {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} = {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1))})
4544eleq1d 2813 . . . . . 6 (𝑖 = ((♯‘𝑊) − 1) → ({((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ (Edg‘𝐺)))
4641, 45ralsn 4645 . . . . 5 (∀𝑖 ∈ {((♯‘𝑊) − 1)} {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ (Edg‘𝐺))
47 fzo0end 13719 . . . . . . . . . 10 ((♯‘𝑊) ∈ ℕ → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
4817, 47syl 17 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊)))
49 ccats1val1 14591 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ ((♯‘𝑊) − 1) ∈ (0..^(♯‘𝑊))) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
5048, 49syldan 591 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)) = (𝑊‘((♯‘𝑊) − 1)))
51 lsw 14529 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
5251adantr 480 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (lastS‘𝑊) = (𝑊‘((♯‘𝑊) − 1)))
5350, 52eqtr4d 2767 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)) = (lastS‘𝑊))
54 npcan1 11603 . . . . . . . . . . 11 ((♯‘𝑊) ∈ ℂ → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
5510, 54syl 17 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
5655adantr 480 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (((♯‘𝑊) − 1) + 1) = (♯‘𝑊))
5756fveq2d 6862 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1)) = ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(♯‘𝑊)))
58 eqidd 2730 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) = (♯‘𝑊))
59 ccats1val2 14592 . . . . . . . . 9 ((𝑊 ∈ Word 𝑉 ∧ (𝑊‘0) ∈ 𝑉 ∧ (♯‘𝑊) = (♯‘𝑊)) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(♯‘𝑊)) = (𝑊‘0))
6027, 1, 58, 59syl3anc 1373 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(♯‘𝑊)) = (𝑊‘0))
6157, 60eqtrd 2764 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1)) = (𝑊‘0))
6253, 61preq12d 4705 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1))} = {(lastS‘𝑊), (𝑊‘0)})
6362eleq1d 2813 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ({((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘((♯‘𝑊) − 1)), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(((♯‘𝑊) − 1) + 1))} ∈ (Edg‘𝐺) ↔ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
6446, 63bitrid 283 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ {((♯‘𝑊) − 1)} {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
6540, 64anbi12d 632 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ ∀𝑖 ∈ {((♯‘𝑊) − 1)} {((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
6616, 26, 653bitrd 305 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
6727, 2jca 511 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉))
68 ccat0 14541 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) = ∅ ↔ (𝑊 = ∅ ∧ ⟨“(𝑊‘0)”⟩ = ∅)))
69 simpl 482 . . . . . . . 8 ((𝑊 = ∅ ∧ ⟨“(𝑊‘0)”⟩ = ∅) → 𝑊 = ∅)
7068, 69biimtrdi 253 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) = ∅ → 𝑊 = ∅))
7170necon3d 2946 . . . . . 6 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉) → (𝑊 ≠ ∅ → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅))
7271adantld 490 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉) → ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅))
7367, 72mpcom 38 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅)
74 wrdv 14494 . . . . . . 7 (𝑊 ∈ Word 𝑉𝑊 ∈ Word V)
75 s1cli 14570 . . . . . . 7 ⟨“(𝑊‘0)”⟩ ∈ Word V
76 ccatalpha 14558 . . . . . . 7 ((𝑊 ∈ Word V ∧ ⟨“(𝑊‘0)”⟩ ∈ Word V) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉)))
7774, 75, 76sylancl 586 . . . . . 6 (𝑊 ∈ Word 𝑉 → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉)))
7877adantr 480 . . . . 5 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉 ↔ (𝑊 ∈ Word 𝑉 ∧ ⟨“(𝑊‘0)”⟩ ∈ Word 𝑉)))
7927, 2, 78mpbir2and 713 . . . 4 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉)
8073, 79jca 511 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉))
81 clwwlkwwlksb.v . . . . . 6 𝑉 = (Vtx‘𝐺)
82 eqid 2729 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
8381, 82iswwlks 29766 . . . . 5 ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺) ↔ ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
84 df-3an 1088 . . . . 5 (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉 ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)) ↔ (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8583, 84bitri 275 . . . 4 ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺) ↔ (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8685a1i 11 . . 3 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺) ↔ (((𝑊 ++ ⟨“(𝑊‘0)”⟩) ≠ ∅ ∧ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ Word 𝑉) ∧ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺))))
8780, 86mpbirand 707 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → ((𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺) ↔ ∀𝑖 ∈ (0..^((♯‘(𝑊 ++ ⟨“(𝑊‘0)”⟩)) − 1)){((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘𝑖), ((𝑊 ++ ⟨“(𝑊‘0)”⟩)‘(𝑖 + 1))} ∈ (Edg‘𝐺)))
8881, 82isclwwlk 29913 . . . 4 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)))
89 3anass 1094 . . . 4 (((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ ∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺)) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
9088, 89bitri 275 . . 3 (𝑊 ∈ (ClWWalks‘𝐺) ↔ ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) ∧ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
9190baib 535 . 2 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (∀𝑖 ∈ (0..^((♯‘𝑊) − 1)){(𝑊𝑖), (𝑊‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {(lastS‘𝑊), (𝑊‘0)} ∈ (Edg‘𝐺))))
9266, 87, 913bitr4rd 312 1 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (𝑊 ∈ (ClWWalks‘𝐺) ↔ (𝑊 ++ ⟨“(𝑊‘0)”⟩) ∈ (WWalks‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  Vcvv 3447  cun 3912  c0 4296  {csn 4589  {cpr 4591  cfv 6511  (class class class)co 7387  cc 11066  0cc0 11068  1c1 11069   + caddc 11071  cmin 11405  cn 12186  0cn0 12442  cz 12529  cuz 12793  ..^cfzo 13615  chash 14295  Word cword 14478  lastSclsw 14527   ++ cconcat 14535  ⟨“cs1 14560  Vtxcvtx 28923  Edgcedg 28974  WWalkscwwlks 29755  ClWWalkscclwwlk 29910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-fzo 13616  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-wwlks 29760  df-clwwlk 29911
This theorem is referenced by:  clwwlknwwlksnb  29984
  Copyright terms: Public domain W3C validator