![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ttgelitv | Structured version Visualization version GIF version |
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
Ref | Expression |
---|---|
ttgval.n | β’ πΊ = (toTGβπ») |
ttgitvval.i | β’ πΌ = (ItvβπΊ) |
ttgitvval.b | β’ π = (Baseβπ») |
ttgitvval.m | β’ β = (-gβπ») |
ttgitvval.s | β’ Β· = ( Β·π βπ») |
ttgelitv.x | β’ (π β π β π) |
ttgelitv.y | β’ (π β π β π) |
ttgelitv.h | β’ (π β π» β π) |
ttgelitv.z | β’ (π β π β π) |
Ref | Expression |
---|---|
ttgelitv | β’ (π β (π β (ππΌπ) β βπ β (0[,]1)(π β π) = (π Β· (π β π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ttgelitv.z | . 2 β’ (π β π β π) | |
2 | ttgelitv.h | . . . . 5 β’ (π β π» β π) | |
3 | ttgelitv.x | . . . . 5 β’ (π β π β π) | |
4 | ttgelitv.y | . . . . 5 β’ (π β π β π) | |
5 | ttgval.n | . . . . . 6 β’ πΊ = (toTGβπ») | |
6 | ttgitvval.i | . . . . . 6 β’ πΌ = (ItvβπΊ) | |
7 | ttgitvval.b | . . . . . 6 β’ π = (Baseβπ») | |
8 | ttgitvval.m | . . . . . 6 β’ β = (-gβπ») | |
9 | ttgitvval.s | . . . . . 6 β’ Β· = ( Β·π βπ») | |
10 | 5, 6, 7, 8, 9 | ttgitvval 28563 | . . . . 5 β’ ((π» β π β§ π β π β§ π β π) β (ππΌπ) = {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))}) |
11 | 2, 3, 4, 10 | syl3anc 1368 | . . . 4 β’ (π β (ππΌπ) = {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))}) |
12 | 11 | eleq2d 2811 | . . 3 β’ (π β (π β (ππΌπ) β π β {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))})) |
13 | oveq1 7408 | . . . . . 6 β’ (π§ = π β (π§ β π) = (π β π)) | |
14 | 13 | eqeq1d 2726 | . . . . 5 β’ (π§ = π β ((π§ β π) = (π Β· (π β π)) β (π β π) = (π Β· (π β π)))) |
15 | 14 | rexbidv 3170 | . . . 4 β’ (π§ = π β (βπ β (0[,]1)(π§ β π) = (π Β· (π β π)) β βπ β (0[,]1)(π β π) = (π Β· (π β π)))) |
16 | 15 | elrab 3675 | . . 3 β’ (π β {π§ β π β£ βπ β (0[,]1)(π§ β π) = (π Β· (π β π))} β (π β π β§ βπ β (0[,]1)(π β π) = (π Β· (π β π)))) |
17 | 12, 16 | bitrdi 287 | . 2 β’ (π β (π β (ππΌπ) β (π β π β§ βπ β (0[,]1)(π β π) = (π Β· (π β π))))) |
18 | 1, 17 | mpbirand 704 | 1 β’ (π β (π β (ππΌπ) β βπ β (0[,]1)(π β π) = (π Β· (π β π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1533 β wcel 2098 βwrex 3062 {crab 3424 βcfv 6533 (class class class)co 7401 0cc0 11105 1c1 11106 [,]cicc 13323 Basecbs 17140 Β·π cvsca 17197 -gcsg 18852 Itvcitv 28108 toTGcttg 28548 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-er 8698 df-en 8935 df-dom 8936 df-sdom 8937 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-itv 28110 df-lng 28111 df-ttg 28549 |
This theorem is referenced by: ttgbtwnid 28565 ttgcontlem1 28566 |
Copyright terms: Public domain | W3C validator |