MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgelitv Structured version   Visualization version   GIF version

Theorem ttgelitv 28915
Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n 𝐺 = (toTG‘𝐻)
ttgitvval.i 𝐼 = (Itv‘𝐺)
ttgitvval.b 𝑃 = (Base‘𝐻)
ttgitvval.m = (-g𝐻)
ttgitvval.s · = ( ·𝑠𝐻)
ttgelitv.x (𝜑𝑋𝑃)
ttgelitv.y (𝜑𝑌𝑃)
ttgelitv.h (𝜑𝐻𝑉)
ttgelitv.z (𝜑𝑍𝑃)
Assertion
Ref Expression
ttgelitv (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
Distinct variable groups:   ,𝑘   𝑘,𝐻   𝑃,𝑘   𝑘,𝑉   𝑘,𝑋   𝑘,𝑌   𝑘,𝑍
Allowed substitution hints:   𝜑(𝑘)   · (𝑘)   𝐺(𝑘)   𝐼(𝑘)

Proof of Theorem ttgelitv
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ttgelitv.z . 2 (𝜑𝑍𝑃)
2 ttgelitv.h . . . . 5 (𝜑𝐻𝑉)
3 ttgelitv.x . . . . 5 (𝜑𝑋𝑃)
4 ttgelitv.y . . . . 5 (𝜑𝑌𝑃)
5 ttgval.n . . . . . 6 𝐺 = (toTG‘𝐻)
6 ttgitvval.i . . . . . 6 𝐼 = (Itv‘𝐺)
7 ttgitvval.b . . . . . 6 𝑃 = (Base‘𝐻)
8 ttgitvval.m . . . . . 6 = (-g𝐻)
9 ttgitvval.s . . . . . 6 · = ( ·𝑠𝐻)
105, 6, 7, 8, 9ttgitvval 28914 . . . . 5 ((𝐻𝑉𝑋𝑃𝑌𝑃) → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
112, 3, 4, 10syl3anc 1371 . . . 4 (𝜑 → (𝑋𝐼𝑌) = {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))})
1211eleq2d 2830 . . 3 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))}))
13 oveq1 7455 . . . . . 6 (𝑧 = 𝑍 → (𝑧 𝑋) = (𝑍 𝑋))
1413eqeq1d 2742 . . . . 5 (𝑧 = 𝑍 → ((𝑧 𝑋) = (𝑘 · (𝑌 𝑋)) ↔ (𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
1514rexbidv 3185 . . . 4 (𝑧 = 𝑍 → (∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋)) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
1615elrab 3708 . . 3 (𝑍 ∈ {𝑧𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 𝑋) = (𝑘 · (𝑌 𝑋))} ↔ (𝑍𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
1712, 16bitrdi 287 . 2 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ (𝑍𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋)))))
181, 17mpbirand 706 1 (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 𝑋) = (𝑘 · (𝑌 𝑋))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wrex 3076  {crab 3443  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185  [,]cicc 13410  Basecbs 17258   ·𝑠 cvsca 17315  -gcsg 18975  Itvcitv 28459  toTGcttg 28899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-dec 12759  df-sets 17211  df-slot 17229  df-ndx 17241  df-itv 28461  df-lng 28462  df-ttg 28900
This theorem is referenced by:  ttgbtwnid  28916  ttgcontlem1  28917
  Copyright terms: Public domain W3C validator