| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ttgelitv | Structured version Visualization version GIF version | ||
| Description: Betweenness for a subcomplex Hilbert space augmented with betweenness. (Contributed by Thierry Arnoux, 25-Mar-2019.) |
| Ref | Expression |
|---|---|
| ttgval.n | ⊢ 𝐺 = (toTG‘𝐻) |
| ttgitvval.i | ⊢ 𝐼 = (Itv‘𝐺) |
| ttgitvval.b | ⊢ 𝑃 = (Base‘𝐻) |
| ttgitvval.m | ⊢ − = (-g‘𝐻) |
| ttgitvval.s | ⊢ · = ( ·𝑠 ‘𝐻) |
| ttgelitv.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| ttgelitv.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| ttgelitv.h | ⊢ (𝜑 → 𝐻 ∈ 𝑉) |
| ttgelitv.z | ⊢ (𝜑 → 𝑍 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| ttgelitv | ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ttgelitv.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑃) | |
| 2 | ttgelitv.h | . . . . 5 ⊢ (𝜑 → 𝐻 ∈ 𝑉) | |
| 3 | ttgelitv.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 4 | ttgelitv.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 5 | ttgval.n | . . . . . 6 ⊢ 𝐺 = (toTG‘𝐻) | |
| 6 | ttgitvval.i | . . . . . 6 ⊢ 𝐼 = (Itv‘𝐺) | |
| 7 | ttgitvval.b | . . . . . 6 ⊢ 𝑃 = (Base‘𝐻) | |
| 8 | ttgitvval.m | . . . . . 6 ⊢ − = (-g‘𝐻) | |
| 9 | ttgitvval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝐻) | |
| 10 | 5, 6, 7, 8, 9 | ttgitvval 28862 | . . . . 5 ⊢ ((𝐻 ∈ 𝑉 ∧ 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃) → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| 11 | 2, 3, 4, 10 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑋𝐼𝑌) = {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))}) |
| 12 | 11 | eleq2d 2814 | . . 3 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ 𝑍 ∈ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))})) |
| 13 | oveq1 7376 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 − 𝑋) = (𝑍 − 𝑋)) | |
| 14 | 13 | eqeq1d 2731 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)) ↔ (𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 15 | 14 | rexbidv 3157 | . . . 4 ⊢ (𝑧 = 𝑍 → (∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋)) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 16 | 15 | elrab 3656 | . . 3 ⊢ (𝑍 ∈ {𝑧 ∈ 𝑃 ∣ ∃𝑘 ∈ (0[,]1)(𝑧 − 𝑋) = (𝑘 · (𝑌 − 𝑋))} ↔ (𝑍 ∈ 𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| 17 | 12, 16 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ (𝑍 ∈ 𝑃 ∧ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋))))) |
| 18 | 1, 17 | mpbirand 707 | 1 ⊢ (𝜑 → (𝑍 ∈ (𝑋𝐼𝑌) ↔ ∃𝑘 ∈ (0[,]1)(𝑍 − 𝑋) = (𝑘 · (𝑌 − 𝑋)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3402 ‘cfv 6499 (class class class)co 7369 0cc0 11044 1c1 11045 [,]cicc 13285 Basecbs 17155 ·𝑠 cvsca 17200 -gcsg 18849 Itvcitv 28413 toTGcttg 28853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-dec 12626 df-sets 17110 df-slot 17128 df-ndx 17140 df-itv 28415 df-lng 28416 df-ttg 28854 |
| This theorem is referenced by: ttgbtwnid 28864 ttgcontlem1 28865 |
| Copyright terms: Public domain | W3C validator |