Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzin Structured version   Visualization version   GIF version

Theorem uzin 12256
 Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem uzin
StepHypRef Expression
1 uztric 12244 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2 uzss 12243 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3 sseqin2 4167 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
42, 3sylib 221 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
5 eluzle 12234 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
6 iftrue 4446 . . . . . 6 (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
75, 6syl 17 . . . . 5 (𝑁 ∈ (ℤ𝑀) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
87fveq2d 6647 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑁))
94, 8eqtr4d 2859 . . 3 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
10 uzss 12243 . . . . 5 (𝑀 ∈ (ℤ𝑁) → (ℤ𝑀) ⊆ (ℤ𝑁))
11 df-ss 3927 . . . . 5 ((ℤ𝑀) ⊆ (ℤ𝑁) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
1210, 11sylib 221 . . . 4 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
13 eluzle 12234 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
14 eluzel2 12226 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
15 eluzelz 12231 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
16 zre 11963 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 11963 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
18 letri3 10703 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1916, 17, 18syl2an 598 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
2014, 15, 19syl2anc 587 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
2113, 20mpbirand 706 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀𝑀𝑁))
2221biimprcd 253 . . . . . . . 8 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → 𝑁 = 𝑀))
236eqeq1d 2823 . . . . . . . 8 (𝑀𝑁 → (if(𝑀𝑁, 𝑁, 𝑀) = 𝑀𝑁 = 𝑀))
2422, 23sylibrd 262 . . . . . . 7 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
2524com12 32 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
26 iffalse 4449 . . . . . 6 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2725, 26pm2.61d1 183 . . . . 5 (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2827fveq2d 6647 . . . 4 (𝑀 ∈ (ℤ𝑁) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑀))
2912, 28eqtr4d 2859 . . 3 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
309, 29jaoi 854 . 2 ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
311, 30syl 17 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844   = wceq 1538   ∈ wcel 2115   ∩ cin 3909   ⊆ wss 3910  ifcif 4440   class class class wbr 5039  ‘cfv 6328  ℝcr 10513   ≤ cle 10653  ℤcz 11959  ℤ≥cuz 12221 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436  ax-cnex 10570  ax-resscn 10571  ax-pre-lttri 10588  ax-pre-lttrn 10589 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-nel 3112  df-ral 3131  df-rex 3132  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-ov 7133  df-er 8264  df-en 8485  df-dom 8486  df-sdom 8487  df-pnf 10654  df-mnf 10655  df-xr 10656  df-ltxr 10657  df-le 10658  df-neg 10850  df-z 11960  df-uz 12222 This theorem is referenced by:  uzin2  14683  explecnv  15199  uzrest  22481
 Copyright terms: Public domain W3C validator