MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzin Structured version   Visualization version   GIF version

Theorem uzin 12897
Description: Intersection of two upper intervals of integers. (Contributed by Mario Carneiro, 24-Dec-2013.)
Assertion
Ref Expression
uzin ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))

Proof of Theorem uzin
StepHypRef Expression
1 uztric 12881 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)))
2 uzss 12880 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
3 sseqin2 4203 . . . . 5 ((ℤ𝑁) ⊆ (ℤ𝑀) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
42, 3sylib 218 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑁))
5 eluzle 12870 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑀𝑁)
6 iftrue 4511 . . . . . 6 (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
75, 6syl 17 . . . . 5 (𝑁 ∈ (ℤ𝑀) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑁)
87fveq2d 6885 . . . 4 (𝑁 ∈ (ℤ𝑀) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑁))
94, 8eqtr4d 2774 . . 3 (𝑁 ∈ (ℤ𝑀) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
10 uzss 12880 . . . . 5 (𝑀 ∈ (ℤ𝑁) → (ℤ𝑀) ⊆ (ℤ𝑁))
11 dfss2 3949 . . . . 5 ((ℤ𝑀) ⊆ (ℤ𝑁) ↔ ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
1210, 11sylib 218 . . . 4 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ𝑀))
13 eluzle 12870 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → 𝑁𝑀)
14 eluzel2 12862 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑁 ∈ ℤ)
15 eluzelz 12867 . . . . . . . . . . 11 (𝑀 ∈ (ℤ𝑁) → 𝑀 ∈ ℤ)
16 zre 12597 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
17 zre 12597 . . . . . . . . . . . 12 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
18 letri3 11325 . . . . . . . . . . . 12 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
1916, 17, 18syl2an 596 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
2014, 15, 19syl2anc 584 . . . . . . . . . 10 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀 ↔ (𝑁𝑀𝑀𝑁)))
2113, 20mpbirand 707 . . . . . . . . 9 (𝑀 ∈ (ℤ𝑁) → (𝑁 = 𝑀𝑀𝑁))
2221biimprcd 250 . . . . . . . 8 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → 𝑁 = 𝑀))
236eqeq1d 2738 . . . . . . . 8 (𝑀𝑁 → (if(𝑀𝑁, 𝑁, 𝑀) = 𝑀𝑁 = 𝑀))
2422, 23sylibrd 259 . . . . . . 7 (𝑀𝑁 → (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
2524com12 32 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀))
26 iffalse 4514 . . . . . 6 𝑀𝑁 → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2725, 26pm2.61d1 180 . . . . 5 (𝑀 ∈ (ℤ𝑁) → if(𝑀𝑁, 𝑁, 𝑀) = 𝑀)
2827fveq2d 6885 . . . 4 (𝑀 ∈ (ℤ𝑁) → (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)) = (ℤ𝑀))
2912, 28eqtr4d 2774 . . 3 (𝑀 ∈ (ℤ𝑁) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
309, 29jaoi 857 . 2 ((𝑁 ∈ (ℤ𝑀) ∨ 𝑀 ∈ (ℤ𝑁)) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
311, 30syl 17 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((ℤ𝑀) ∩ (ℤ𝑁)) = (ℤ‘if(𝑀𝑁, 𝑁, 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  cin 3930  wss 3931  ifcif 4505   class class class wbr 5124  cfv 6536  cr 11133  cle 11275  cz 12593  cuz 12857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-pre-lttri 11208  ax-pre-lttrn 11209
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-po 5566  df-so 5567  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-neg 11474  df-z 12594  df-uz 12858
This theorem is referenced by:  uzin2  15368  explecnv  15886  uzrest  23840
  Copyright terms: Public domain W3C validator