MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxsuffeqwrdeq Structured version   Visualization version   GIF version

Theorem pfxsuffeqwrdeq 14051
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
Assertion
Ref Expression
pfxsuffeqwrdeq ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))

Proof of Theorem pfxsuffeqwrdeq
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqwrd 13900 . . 3 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
213adant3 1129 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
3 elfzofz 13048 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (0...(♯‘𝑊)))
4 fzosplit 13065 . . . . . . . . 9 (𝐼 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
53, 4syl 17 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
653ad2ant3 1132 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
76adantr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
87raleqdv 3364 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖)))
9 ralunb 4118 . . . . 5 (∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
108, 9syl6bb 290 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
11 eqidd 2799 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 = 𝐼)
12 3simpa 1145 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
1312adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
14 elfzonn0 13077 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℕ0)
1514, 14jca 515 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
16153ad2ant3 1132 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
1716adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
18 elfzo0le 13076 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ≤ (♯‘𝑊))
19183ad2ant3 1132 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (♯‘𝑊))
2019adantr 484 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑊))
21 breq2 5034 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑆) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2221adantl 485 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2320, 22mpbid 235 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑆))
24 pfxeq 14049 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0𝐼 ∈ ℕ0) ∧ (𝐼 ≤ (♯‘𝑊) ∧ 𝐼 ≤ (♯‘𝑆))) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2513, 17, 20, 23, 24syl112anc 1371 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2611, 25mpbirand 706 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖)))
27 lencl 13876 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2827, 14anim12ci 616 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
29283adant2 1128 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3029adantr 484 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3127nn0red 11944 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
3231leidd 11195 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ≤ (♯‘𝑊))
3332adantr 484 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑊))
34 eqle 10731 . . . . . . . . 9 (((♯‘𝑊) ∈ ℝ ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3531, 34sylan 583 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3633, 35jca 515 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
37363ad2antl1 1182 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
38 swrdspsleq 14018 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) ∧ ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
3913, 30, 37, 38syl3anc 1368 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
4026, 39anbi12d 633 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
4110, 40bitr4d 285 . . 3 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩))))
4241pm5.32da 582 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)) ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
432, 42bitrd 282 1 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  cun 3879  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  cle 10665  0cn0 11885  ...cfz 12885  ..^cfzo 13028  chash 13686  Word cword 13857   substr csubstr 13993   prefix cpfx 14023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-substr 13994  df-pfx 14024
This theorem is referenced by:  pfxsuff1eqwrdeq  14052  2swrd2eqwrdeq  14306
  Copyright terms: Public domain W3C validator