Step | Hyp | Ref
| Expression |
1 | | eqwrd 14260 |
. . 3
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖)))) |
2 | 1 | 3adant3 1131 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖)))) |
3 | | elfzofz 13403 |
. . . . . . . . 9
⊢ (𝐼 ∈
(0..^(♯‘𝑊))
→ 𝐼 ∈
(0...(♯‘𝑊))) |
4 | | fzosplit 13420 |
. . . . . . . . 9
⊢ (𝐼 ∈
(0...(♯‘𝑊))
→ (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝐼 ∈
(0..^(♯‘𝑊))
→ (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))) |
6 | 5 | 3ad2ant3 1134 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) →
(0..^(♯‘𝑊)) =
((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))) |
7 | 6 | adantr 481 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) →
(0..^(♯‘𝑊)) =
((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))) |
8 | 7 | raleqdv 3348 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖) ↔ ∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊‘𝑖) = (𝑆‘𝑖))) |
9 | | ralunb 4125 |
. . . . 5
⊢
(∀𝑖 ∈
((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊‘𝑖) = (𝑆‘𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖))) |
10 | 8, 9 | bitrdi 287 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖)))) |
11 | | eqidd 2739 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 = 𝐼) |
12 | | 3simpa 1147 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉)) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉)) |
14 | | elfzonn0 13432 |
. . . . . . . . . 10
⊢ (𝐼 ∈
(0..^(♯‘𝑊))
→ 𝐼 ∈
ℕ0) |
15 | 14, 14 | jca 512 |
. . . . . . . . 9
⊢ (𝐼 ∈
(0..^(♯‘𝑊))
→ (𝐼 ∈
ℕ0 ∧ 𝐼
∈ ℕ0)) |
16 | 15 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ 𝐼 ∈
ℕ0)) |
17 | 16 | adantr 481 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0 ∧ 𝐼 ∈
ℕ0)) |
18 | | elfzo0le 13431 |
. . . . . . . . 9
⊢ (𝐼 ∈
(0..^(♯‘𝑊))
→ 𝐼 ≤
(♯‘𝑊)) |
19 | 18 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (♯‘𝑊)) |
20 | 19 | adantr 481 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑊)) |
21 | | breq2 5078 |
. . . . . . . . 9
⊢
((♯‘𝑊) =
(♯‘𝑆) →
(𝐼 ≤
(♯‘𝑊) ↔
𝐼 ≤ (♯‘𝑆))) |
22 | 21 | adantl 482 |
. . . . . . . 8
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆))) |
23 | 20, 22 | mpbid 231 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑆)) |
24 | | pfxeq 14409 |
. . . . . . 7
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0 ∧ 𝐼 ∈ ℕ0)
∧ (𝐼 ≤
(♯‘𝑊) ∧
𝐼 ≤ (♯‘𝑆))) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖)))) |
25 | 13, 17, 20, 23, 24 | syl112anc 1373 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖)))) |
26 | 11, 25 | mpbirand 704 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ ∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖))) |
27 | | lencl 14236 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈
ℕ0) |
28 | 27, 14 | anim12ci 614 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧
(♯‘𝑊) ∈
ℕ0)) |
29 | 28 | 3adant2 1130 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧
(♯‘𝑊) ∈
ℕ0)) |
30 | 29 | adantr 481 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0 ∧
(♯‘𝑊) ∈
ℕ0)) |
31 | 27 | nn0red 12294 |
. . . . . . . . . 10
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ) |
32 | 31 | leidd 11541 |
. . . . . . . . 9
⊢ (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ≤ (♯‘𝑊)) |
33 | 32 | adantr 481 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑊)) |
34 | | eqle 11077 |
. . . . . . . . 9
⊢
(((♯‘𝑊)
∈ ℝ ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆)) |
35 | 31, 34 | sylan 580 |
. . . . . . . 8
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆)) |
36 | 33, 35 | jca 512 |
. . . . . . 7
⊢ ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) |
37 | 36 | 3ad2antl1 1184 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) |
38 | | swrdspsleq 14378 |
. . . . . 6
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0 ∧
(♯‘𝑊) ∈
ℕ0) ∧ ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) → ((𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖))) |
39 | 13, 30, 37, 38 | syl3anc 1370 |
. . . . 5
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖))) |
40 | 26, 39 | anbi12d 631 |
. . . 4
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉)) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊‘𝑖) = (𝑆‘𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖)))) |
41 | 10, 40 | bitr4d 281 |
. . 3
⊢ (((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖) ↔ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉)))) |
42 | 41 | pm5.32da 579 |
. 2
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) →
(((♯‘𝑊) =
(♯‘𝑆) ∧
∀𝑖 ∈
(0..^(♯‘𝑊))(𝑊‘𝑖) = (𝑆‘𝑖)) ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉))))) |
43 | 2, 42 | bitrd 278 |
1
⊢ ((𝑊 ∈ Word 𝑉 ∧ 𝑆 ∈ Word 𝑉 ∧ 𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr 〈𝐼, (♯‘𝑊)〉) = (𝑆 substr 〈𝐼, (♯‘𝑊)〉))))) |