MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pfxsuffeqwrdeq Structured version   Visualization version   GIF version

Theorem pfxsuffeqwrdeq 14045
Description: Two words are equal if and only if they have the same prefix and the same suffix. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Revised by AV, 5-May-2020.)
Assertion
Ref Expression
pfxsuffeqwrdeq ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))

Proof of Theorem pfxsuffeqwrdeq
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqwrd 13894 . . 3 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
213adant3 1128 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
3 elfzofz 13043 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ (0...(♯‘𝑊)))
4 fzosplit 13060 . . . . . . . . 9 (𝐼 ∈ (0...(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
53, 4syl 17 . . . . . . . 8 (𝐼 ∈ (0..^(♯‘𝑊)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
653ad2ant3 1131 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
76adantr 483 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (0..^(♯‘𝑊)) = ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊))))
87raleqdv 3411 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖)))
9 ralunb 4155 . . . . 5 (∀𝑖 ∈ ((0..^𝐼) ∪ (𝐼..^(♯‘𝑊)))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
108, 9syl6bb 289 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
11 eqidd 2822 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 = 𝐼)
12 3simpa 1144 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
1312adantr 483 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉))
14 elfzonn0 13072 . . . . . . . . . 10 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ∈ ℕ0)
1514, 14jca 514 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
16153ad2ant3 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
1716adantr 483 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0𝐼 ∈ ℕ0))
18 elfzo0le 13071 . . . . . . . . 9 (𝐼 ∈ (0..^(♯‘𝑊)) → 𝐼 ≤ (♯‘𝑊))
19183ad2ant3 1131 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → 𝐼 ≤ (♯‘𝑊))
2019adantr 483 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑊))
21 breq2 5056 . . . . . . . . 9 ((♯‘𝑊) = (♯‘𝑆) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2221adantl 484 . . . . . . . 8 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ≤ (♯‘𝑊) ↔ 𝐼 ≤ (♯‘𝑆)))
2320, 22mpbid 234 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → 𝐼 ≤ (♯‘𝑆))
24 pfxeq 14043 . . . . . . 7 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0𝐼 ∈ ℕ0) ∧ (𝐼 ≤ (♯‘𝑊) ∧ 𝐼 ≤ (♯‘𝑆))) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2513, 17, 20, 23, 24syl112anc 1370 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ (𝐼 = 𝐼 ∧ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖))))
2611, 25mpbirand 705 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ↔ ∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖)))
27 lencl 13870 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℕ0)
2827, 14anim12ci 615 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
29283adant2 1127 . . . . . . 7 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3029adantr 483 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0))
3127nn0red 11943 . . . . . . . . . 10 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ∈ ℝ)
3231leidd 11192 . . . . . . . . 9 (𝑊 ∈ Word 𝑉 → (♯‘𝑊) ≤ (♯‘𝑊))
3332adantr 483 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑊))
34 eqle 10728 . . . . . . . . 9 (((♯‘𝑊) ∈ ℝ ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3531, 34sylan 582 . . . . . . . 8 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → (♯‘𝑊) ≤ (♯‘𝑆))
3633, 35jca 514 . . . . . . 7 ((𝑊 ∈ Word 𝑉 ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
37363ad2antl1 1181 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆)))
38 swrdspsleq 14012 . . . . . 6 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉) ∧ (𝐼 ∈ ℕ0 ∧ (♯‘𝑊) ∈ ℕ0) ∧ ((♯‘𝑊) ≤ (♯‘𝑊) ∧ (♯‘𝑊) ≤ (♯‘𝑆))) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
3913, 30, 37, 38syl3anc 1367 . . . . 5 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → ((𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩) ↔ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)))
4026, 39anbi12d 632 . . . 4 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)) ↔ (∀𝑖 ∈ (0..^𝐼)(𝑊𝑖) = (𝑆𝑖) ∧ ∀𝑖 ∈ (𝐼..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖))))
4110, 40bitr4d 284 . . 3 (((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) ∧ (♯‘𝑊) = (♯‘𝑆)) → (∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖) ↔ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩))))
4241pm5.32da 581 . 2 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (((♯‘𝑊) = (♯‘𝑆) ∧ ∀𝑖 ∈ (0..^(♯‘𝑊))(𝑊𝑖) = (𝑆𝑖)) ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
432, 42bitrd 281 1 ((𝑊 ∈ Word 𝑉𝑆 ∈ Word 𝑉𝐼 ∈ (0..^(♯‘𝑊))) → (𝑊 = 𝑆 ↔ ((♯‘𝑊) = (♯‘𝑆) ∧ ((𝑊 prefix 𝐼) = (𝑆 prefix 𝐼) ∧ (𝑊 substr ⟨𝐼, (♯‘𝑊)⟩) = (𝑆 substr ⟨𝐼, (♯‘𝑊)⟩)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  cun 3922  cop 4559   class class class wbr 5052  cfv 6341  (class class class)co 7142  cr 10522  0cc0 10523  cle 10662  0cn0 11884  ...cfz 12882  ..^cfzo 13023  chash 13680  Word cword 13851   substr csubstr 13987   prefix cpfx 14017
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5252  ax-pr 5316  ax-un 7447  ax-cnex 10579  ax-resscn 10580  ax-1cn 10581  ax-icn 10582  ax-addcl 10583  ax-addrcl 10584  ax-mulcl 10585  ax-mulrcl 10586  ax-mulcom 10587  ax-addass 10588  ax-mulass 10589  ax-distr 10590  ax-i2m1 10591  ax-1ne0 10592  ax-1rid 10593  ax-rnegex 10594  ax-rrecex 10595  ax-cnre 10596  ax-pre-lttri 10597  ax-pre-lttrn 10598  ax-pre-ltadd 10599  ax-pre-mulgt0 10600
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3488  df-sbc 3764  df-csb 3872  df-dif 3927  df-un 3929  df-in 3931  df-ss 3940  df-pss 3942  df-nul 4280  df-if 4454  df-pw 4527  df-sn 4554  df-pr 4556  df-tp 4558  df-op 4560  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5446  df-eprel 5451  df-po 5460  df-so 5461  df-fr 5500  df-we 5502  df-xp 5547  df-rel 5548  df-cnv 5549  df-co 5550  df-dm 5551  df-rn 5552  df-res 5553  df-ima 5554  df-pred 6134  df-ord 6180  df-on 6181  df-lim 6182  df-suc 6183  df-iota 6300  df-fun 6343  df-fn 6344  df-f 6345  df-f1 6346  df-fo 6347  df-f1o 6348  df-fv 6349  df-riota 7100  df-ov 7145  df-oprab 7146  df-mpo 7147  df-om 7567  df-1st 7675  df-2nd 7676  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-1o 8088  df-oadd 8092  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-fin 8499  df-card 9354  df-pnf 10663  df-mnf 10664  df-xr 10665  df-ltxr 10666  df-le 10667  df-sub 10858  df-neg 10859  df-nn 11625  df-n0 11885  df-z 11969  df-uz 12231  df-fz 12883  df-fzo 13024  df-hash 13681  df-word 13852  df-substr 13988  df-pfx 14018
This theorem is referenced by:  pfxsuff1eqwrdeq  14046  2swrd2eqwrdeq  14300
  Copyright terms: Public domain W3C validator