MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcn Structured version   Visualization version   GIF version

Theorem qtopcn 22565
Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopcn (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))

Proof of Theorem qtopcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvimass 5934 . . . . . . 7 (𝐺𝑥) ⊆ dom 𝐺
2 simplrr 778 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐺:𝑌𝑍)
31, 2fssdm 6543 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → (𝐺𝑥) ⊆ 𝑌)
4 simplll 775 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 simplrl 777 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐹:𝑋onto𝑌)
6 elqtop3 22554 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
74, 5, 6syl2anc 587 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
83, 7mpbirand 707 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽))
9 cnvco 5739 . . . . . . . 8 (𝐺𝐹) = (𝐹𝐺)
109imaeq1i 5911 . . . . . . 7 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
11 imaco 6095 . . . . . . 7 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1210, 11eqtri 2759 . . . . . 6 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1312eleq1i 2821 . . . . 5 (((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
148, 13bitr4di 292 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
1514ralbidva 3107 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
16 simprr 773 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐺:𝑌𝑍)
1716biantrurd 536 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
18 fof 6611 . . . . . 6 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
1918ad2antrl 728 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐹:𝑋𝑌)
20 fco 6547 . . . . 5 ((𝐺:𝑌𝑍𝐹:𝑋𝑌) → (𝐺𝐹):𝑋𝑍)
2116, 19, 20syl2anc 587 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺𝐹):𝑋𝑍)
2221biantrurd 536 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
2315, 17, 223bitr3d 312 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹)) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
24 qtoptopon 22555 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2524ad2ant2r 747 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
26 simplr 769 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐾 ∈ (TopOn‘𝑍))
27 iscn 22086 . . 3 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
2825, 26, 27syl2anc 587 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
29 iscn 22086 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3029adantr 484 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3123, 28, 303bitr4d 314 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2112  wral 3051  wss 3853  ccnv 5535  cima 5539  ccom 5540  wf 6354  ontowfo 6356  cfv 6358  (class class class)co 7191   qTop cqtop 16962  TopOnctopon 21761   Cn ccn 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7194  df-oprab 7195  df-mpo 7196  df-map 8488  df-qtop 16966  df-top 21745  df-topon 21762  df-cn 22078
This theorem is referenced by:  qtopeu  22567
  Copyright terms: Public domain W3C validator