MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcn Structured version   Visualization version   GIF version

Theorem qtopcn 23624
Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopcn (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))

Proof of Theorem qtopcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvimass 6026 . . . . . . 7 (𝐺𝑥) ⊆ dom 𝐺
2 simplrr 777 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐺:𝑌𝑍)
31, 2fssdm 6665 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → (𝐺𝑥) ⊆ 𝑌)
4 simplll 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 simplrl 776 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐹:𝑋onto𝑌)
6 elqtop3 23613 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
74, 5, 6syl2anc 584 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
83, 7mpbirand 707 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽))
9 cnvco 5820 . . . . . . . 8 (𝐺𝐹) = (𝐹𝐺)
109imaeq1i 6001 . . . . . . 7 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
11 imaco 6193 . . . . . . 7 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1210, 11eqtri 2754 . . . . . 6 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1312eleq1i 2822 . . . . 5 (((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
148, 13bitr4di 289 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
1514ralbidva 3153 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
16 simprr 772 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐺:𝑌𝑍)
1716biantrurd 532 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
18 fof 6730 . . . . . 6 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
1918ad2antrl 728 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐹:𝑋𝑌)
20 fco 6670 . . . . 5 ((𝐺:𝑌𝑍𝐹:𝑋𝑌) → (𝐺𝐹):𝑋𝑍)
2116, 19, 20syl2anc 584 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺𝐹):𝑋𝑍)
2221biantrurd 532 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
2315, 17, 223bitr3d 309 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹)) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
24 qtoptopon 23614 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2524ad2ant2r 747 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
26 simplr 768 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐾 ∈ (TopOn‘𝑍))
27 iscn 23145 . . 3 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
2825, 26, 27syl2anc 584 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
29 iscn 23145 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3029adantr 480 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3123, 28, 303bitr4d 311 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wral 3047  wss 3897  ccnv 5610  cima 5614  ccom 5615  wf 6472  ontowfo 6474  cfv 6476  (class class class)co 7341   qTop cqtop 17402  TopOnctopon 22820   Cn ccn 23134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-map 8747  df-qtop 17406  df-top 22804  df-topon 22821  df-cn 23137
This theorem is referenced by:  qtopeu  23626
  Copyright terms: Public domain W3C validator