Step | Hyp | Ref
| Expression |
1 | | cnvimass 5989 |
. . . . . . 7
⊢ (◡𝐺 “ 𝑥) ⊆ dom 𝐺 |
2 | | simplrr 775 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → 𝐺:𝑌⟶𝑍) |
3 | 1, 2 | fssdm 6620 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → (◡𝐺 “ 𝑥) ⊆ 𝑌) |
4 | | simplll 772 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → 𝐽 ∈ (TopOn‘𝑋)) |
5 | | simplrl 774 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → 𝐹:𝑋–onto→𝑌) |
6 | | elqtop3 22854 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → ((◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((◡𝐺 “ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽))) |
7 | 4, 5, 6 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((◡𝐺 “ 𝑥) ⊆ 𝑌 ∧ (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽))) |
8 | 3, 7 | mpbirand 704 |
. . . . 5
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽)) |
9 | | cnvco 5794 |
. . . . . . . 8
⊢ ◡(𝐺 ∘ 𝐹) = (◡𝐹 ∘ ◡𝐺) |
10 | 9 | imaeq1i 5966 |
. . . . . . 7
⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = ((◡𝐹 ∘ ◡𝐺) “ 𝑥) |
11 | | imaco 6155 |
. . . . . . 7
⊢ ((◡𝐹 ∘ ◡𝐺) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
12 | 10, 11 | eqtri 2766 |
. . . . . 6
⊢ (◡(𝐺 ∘ 𝐹) “ 𝑥) = (◡𝐹 “ (◡𝐺 “ 𝑥)) |
13 | 12 | eleq1i 2829 |
. . . . 5
⊢ ((◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽 ↔ (◡𝐹 “ (◡𝐺 “ 𝑥)) ∈ 𝐽) |
14 | 8, 13 | bitr4di 289 |
. . . 4
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) ∧ 𝑥 ∈ 𝐾) → ((◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
15 | 14 | ralbidva 3111 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽)) |
16 | | simprr 770 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → 𝐺:𝑌⟶𝑍) |
17 | 16 | biantrurd 533 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐺:𝑌⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹)))) |
18 | | fof 6688 |
. . . . . 6
⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) |
19 | 18 | ad2antrl 725 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → 𝐹:𝑋⟶𝑌) |
20 | | fco 6624 |
. . . . 5
⊢ ((𝐺:𝑌⟶𝑍 ∧ 𝐹:𝑋⟶𝑌) → (𝐺 ∘ 𝐹):𝑋⟶𝑍) |
21 | 16, 19, 20 | syl2anc 584 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∘ 𝐹):𝑋⟶𝑍) |
22 | 21 | biantrurd 533 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽 ↔ ((𝐺 ∘ 𝐹):𝑋⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
23 | 15, 17, 22 | 3bitr3d 309 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → ((𝐺:𝑌⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹)) ↔ ((𝐺 ∘ 𝐹):𝑋⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
24 | | qtoptopon 22855 |
. . . 4
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋–onto→𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
25 | 24 | ad2ant2r 744 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌)) |
26 | | simplr 766 |
. . 3
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → 𝐾 ∈ (TopOn‘𝑍)) |
27 | | iscn 22386 |
. . 3
⊢ (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹)))) |
28 | 25, 26, 27 | syl2anc 584 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡𝐺 “ 𝑥) ∈ (𝐽 qTop 𝐹)))) |
29 | | iscn 22386 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) → ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺 ∘ 𝐹):𝑋⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
30 | 29 | adantr 481 |
. 2
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → ((𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺 ∘ 𝐹):𝑋⟶𝑍 ∧ ∀𝑥 ∈ 𝐾 (◡(𝐺 ∘ 𝐹) “ 𝑥) ∈ 𝐽))) |
31 | 23, 28, 30 | 3bitr4d 311 |
1
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋–onto→𝑌 ∧ 𝐺:𝑌⟶𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺 ∘ 𝐹) ∈ (𝐽 Cn 𝐾))) |