MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopcn Structured version   Visualization version   GIF version

Theorem qtopcn 22773
Description: Universal property of a quotient map. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopcn (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))

Proof of Theorem qtopcn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cnvimass 5978 . . . . . . 7 (𝐺𝑥) ⊆ dom 𝐺
2 simplrr 774 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐺:𝑌𝑍)
31, 2fssdm 6604 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → (𝐺𝑥) ⊆ 𝑌)
4 simplll 771 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐽 ∈ (TopOn‘𝑋))
5 simplrl 773 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → 𝐹:𝑋onto𝑌)
6 elqtop3 22762 . . . . . . 7 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
74, 5, 6syl2anc 583 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝑥) ⊆ 𝑌 ∧ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)))
83, 7mpbirand 703 . . . . 5 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽))
9 cnvco 5783 . . . . . . . 8 (𝐺𝐹) = (𝐹𝐺)
109imaeq1i 5955 . . . . . . 7 ((𝐺𝐹) “ 𝑥) = ((𝐹𝐺) “ 𝑥)
11 imaco 6144 . . . . . . 7 ((𝐹𝐺) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1210, 11eqtri 2766 . . . . . 6 ((𝐺𝐹) “ 𝑥) = (𝐹 “ (𝐺𝑥))
1312eleq1i 2829 . . . . 5 (((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ (𝐹 “ (𝐺𝑥)) ∈ 𝐽)
148, 13bitr4di 288 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) ∧ 𝑥𝐾) → ((𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
1514ralbidva 3119 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽))
16 simprr 769 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐺:𝑌𝑍)
1716biantrurd 532 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
18 fof 6672 . . . . . 6 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
1918ad2antrl 724 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐹:𝑋𝑌)
20 fco 6608 . . . . 5 ((𝐺:𝑌𝑍𝐹:𝑋𝑌) → (𝐺𝐹):𝑋𝑍)
2116, 19, 20syl2anc 583 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺𝐹):𝑋𝑍)
2221biantrurd 532 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽 ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
2315, 17, 223bitr3d 308 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹)) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
24 qtoptopon 22763 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto𝑌) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
2524ad2ant2r 743 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐽 qTop 𝐹) ∈ (TopOn‘𝑌))
26 simplr 765 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → 𝐾 ∈ (TopOn‘𝑍))
27 iscn 22294 . . 3 (((𝐽 qTop 𝐹) ∈ (TopOn‘𝑌) ∧ 𝐾 ∈ (TopOn‘𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
2825, 26, 27syl2anc 583 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺:𝑌𝑍 ∧ ∀𝑥𝐾 (𝐺𝑥) ∈ (𝐽 qTop 𝐹))))
29 iscn 22294 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3029adantr 480 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → ((𝐺𝐹) ∈ (𝐽 Cn 𝐾) ↔ ((𝐺𝐹):𝑋𝑍 ∧ ∀𝑥𝐾 ((𝐺𝐹) “ 𝑥) ∈ 𝐽)))
3123, 28, 303bitr4d 310 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑍)) ∧ (𝐹:𝑋onto𝑌𝐺:𝑌𝑍)) → (𝐺 ∈ ((𝐽 qTop 𝐹) Cn 𝐾) ↔ (𝐺𝐹) ∈ (𝐽 Cn 𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2108  wral 3063  wss 3883  ccnv 5579  cima 5583  ccom 5584  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255   qTop cqtop 17131  TopOnctopon 21967   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-qtop 17135  df-top 21951  df-topon 21968  df-cn 22286
This theorem is referenced by:  qtopeu  22775
  Copyright terms: Public domain W3C validator